Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407928, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022842

RESUMO

Although highly appealing for rapid access of molecular complexity, multi-functionalization of alkenes that allows incorporation of more than two functional groups remains a prominent challenge. Herein, we report a novel strategy that merges dipolar cycloaddition with photoredox promoted radical ring-opening remote C(sp3)-H functionalization, thus enabling a smooth 1,2,5-trifunctionalization of unactivated alkenes. A highly regioselective [3+2] cycloaddition anchors a reaction trigger onto alkene substrates. The subsequent halogen atom transfer (XAT) selectively initiates ring-opening process, which is followed by a series of 1,5-hydrogen atom transfer (1,5-HAT) and intermolecular fluorine atom transfer (FAT) events. With this method, site-selective introduction of three different functional groups is accomplished and a broad spectrum of valuable ß-hydroxyl-ε-fluoro-nitrile products are synthesized from readily available terminal alkenes.

2.
Angew Chem Int Ed Engl ; : e202405186, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953457

RESUMO

Excitation of photoactive electron donor-acceptor (EDA) complexes to generate radical is a promising approach in radical chemistry. In this study, we introduce a new model of H-bonding EDA complexes for the selective hydrothiolation and hydroxysulfenylation of carbonyl-activated alkenes with diverse thiols under visible light conditions. The reliability of this H-bonding EDA complex model has been confirmed by meticulous experimental and theoretical calculations. Mechanistic investigations have revealed the significant influence of the solvent in determining whether the excitation of photoactive H-bonding EDA complex leads to charge transfer (CT) or energy-charge transfer (En-CT), thereby controlling Markovnikov and anti-Markovnikov selectivity. Notably, the Quantum Theory of Atoms in Molecules (QTAIM) analysis clearly shows that the excited state of the C=O---H-S EDA complex involves closed-shell partially covalent interactions.

3.
Angew Chem Int Ed Engl ; : e202407150, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979689

RESUMO

Polyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three-component 1,2-halo-halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X') groups in the desired combination of X and X' are lacking. To address this gap, for the first time, we report a three-component halo-halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X = Cl and Br) and alkali metal halides (X' = Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl-based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C-X and C-X' bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.

4.
Nat Prod Res ; : 1-5, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979980

RESUMO

One new previously undescribed trihydroxy fatty ester (1) and three known aliphatic alkenes (2-4) have been isolated from the rhizomes of Trillium govanianum Wall. ex D.Don. The structures of isolated molecules were elucidated using extensive spectroscopic techniques including NMR, HR-ESI-MS, and FT-IR, respectively. This is the first report on the isolation of compounds 3 and 4 from the Trillium genus. Moreover, through a network pharmacology approach, the therapeutic potential of the isolated molecules was investigated. This analysis revealed that these fatty alkenes can be utilised for managing health conditions such as pneumonitis, inflammatory pain, and endothelial dysfunction.

5.
Angew Chem Int Ed Engl ; : e202409429, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972849

RESUMO

Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross-coupling reaction. The result of our exploration is a nickel-catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio- and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α-bromo esters, α-chloro phthalimides, and α-chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates.

6.
Chemistry ; : e202402051, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978189

RESUMO

Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.

7.
ChemSusChem ; : e202401244, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016039

RESUMO

A novel protocol to access vinyl sulfones and internal/terminal olefins via cobalt-catalyzed acceptorless dehydrogenation coupling (ADC) has been established. This system enables the divergent synthesis of three kinds of olefin compounds through the coupling of alcohols and sulfones under oxidant-free conditions. The broad applicability of this procedure is demonstrated by over forty olefin products, including pharmaceutical-related compounds and complex substrates, in a one-pot process. Preliminary mechanistic studies were conducted, and a proposed reaction pathway was presented.

8.
Angew Chem Int Ed Engl ; : e202407262, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881357

RESUMO

Typically catalysed by transition metals, alkene isomerisation is a powerful  methodology for preparation of internal olefins. In contrast, the use of more earth abundant main group reagents is limited to activated substrates, requiring high temperatures and excess stoichiometric amounts. Opening a new portal for progressing this field, here we report applications of bulky sodium amide NaTMP (TMP = 2,2,6,6-tetramethylpiperidide) when partnered by tridentate Lewis donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine) in catalytic alkene isomerisation of terminal olefins under mild reaction conditions. An array of distinct olefins could successfully be isomerised, including unactivated olefins, allylamines and allylethers, showing the high activity of this partnership. In-depth mechanistic insights provided by X-ray crystallography, real-time nuclear magnetic resonance (NMR) monitoring, and density functional theory (DFT) calculations have unveiled the crucial role of in-situ-generated TMP(H) in facilitating efficient isomerisation and the choice of alkali-metal. Additionally, theoretical studies shed light on the observed E/Z selectivity, particularly accounting for selective formation of Z-vinyl ethers. The versatility of our method is further demonstrated through isomerisation of unactivated cycloalkenes, which undergo hydrogen isotope exchange to produce deuterated compounds.

9.
Angew Chem Int Ed Engl ; : e202408305, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760326

RESUMO

A palladium-catalyzed asymmetric 1,n-remote aminoacetoxylation of cis-alkenes has been developed using PhI(OAc)2 as an oxidant, providing the acetoxylated lactams with excellent enantioselectivities under mild reaction conditions. The sterically hindered pyridine-oxazoline (Pyox) L3 with a tert-butyl group in oxazoline ring and propyl group in C6 position of pyridinyl is vital for the reaction, where the former is good for asymmetric aminopalladation step and the latter for the chain walking process. The enantioenriched lactam products were proven to be good building blocks for the synthesis of azabicycles.

10.
Chem Asian J ; 19(14): e202400053, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38741472

RESUMO

In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.

11.
Angew Chem Int Ed Engl ; : e202403485, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780472

RESUMO

Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.

12.
Angew Chem Int Ed Engl ; 63(30): e202404666, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38695434

RESUMO

The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.

13.
Nano Lett ; 24(17): 5165-5173, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630980

RESUMO

Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.

14.
Adv Sci (Weinh) ; 11(24): e2309706, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602437

RESUMO

Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.

15.
Chemistry ; 30(36): e202400280, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38651795

RESUMO

Three hybrid electrochemical protocols, which involve the energy transfer, direct photolysis and N-hydroxyphthalimide catalyst, respectively, are presented for the selenylation/cyclization of the fragile substrates of 3-aza-1,5-dienes with diorganyl diselenides to afford 3-selenomethyl-4-pyrrolin-2-ones. The two electrophotocatalytic reactions and the indirect electrolysis one are both regioselective and external-oxidant- and transition-metal-free, and are associated with a broad substrate scope and high Se-economy, and all three methods are amenable to gram-scale syntheses, late-stage functionalizations, sunlight-induced experiments and all-solar-driven syntheses.

16.
Adv Sci (Weinh) ; 11(25): e2401685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664981

RESUMO

The redox mediated photoelectrochemical (PEC) or electrochemical (EC) alkene oxidation process is a promising method to produce high value-added epoxides. However, due to the competitive reaction of water oxidation and overoxidation of the mediator, the utilization of the electricity is far below the ideal value, where the loss of epoxidation's faradaic efficiency (FE) is ≈50%. In this study, a Br-/HOBr-mediated method is developed to achieve a near-quantitative selectivity and ≈100% FE of styrene oxide on α-Fe2O3, in which low concentration of Br- as mediator and locally generated acidic micro-environment work together to produce the higher active HOBr species. A variety of styrene derivatives are investigated with satisfied epoxidation performance. Based on the analysis of local pH-dependent epoxidation FE and products distribution, the study further verified that HOBr serves as the true active mediator to generate the bromohydrin intermediate. It is believed that this strategy can greatly overcome the limitation of epoxidation FE to enable future industrial applications.

17.
Angew Chem Int Ed Engl ; 63(26): e202402638, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38591826

RESUMO

Alkenes constitute an enabling motif in organic synthesis, as they can be functionalized to form highly substituted molecules. Z-alkenes are generally challenging to access due to the thermodynamic preference for the formation of E-alkenes compared to Z-alkenes. Dehydrogenation methodologies to selectively form Z-alkenes have not yet been reported. Herein, we report a Z-selective, propargylic dehydrogenation that provides 1,3-enynes through the invention of a Co-catalyzed oxidation system. Observation of a kinetic isotope effect (KIE) revealed that deprotonation of the propargylic position is the rate limiting step. Additionally, isomerization experiments were conducted and confirmed that the observed Z-selectivity is a kinetic effect. A proposed stereomechanistic model for the Z-selectivity is included.

18.
Beilstein J Org Chem ; 20: 787-814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655559

RESUMO

The hydrochlorination of alkenes has been extensively studied in research and is commonly featured in organic chemistry textbooks as an exemplification of the Markovnikov rule. However, the application of this reaction is typically limited to specific alkenes, such as highly substituted ones, styrenes, or strained systems. Conversely, monosubstituted or 1,2-disubstituted alkenes do not readily react with HCl gas or solutions of HCl gas at practical rates. The challenges associated with hydrochlorination reactions for these "non-activated" alkenes have spurred considerable research efforts over the past 30 years, which constitute the primary focus of this review. The discussion begins with classical polar hydrochlorinations, followed by metal-promoted radical hydrochlorinations, and concludes with a brief overview of recent anti-Markovnikov hydrochlorinations.

19.
Adv Sci (Weinh) ; 11(23): e2309069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532287

RESUMO

A novel catalytic system for radical cross-coupling reactions based on copper and chiral Pyridyl-bis(imidazole) (PyBim) ligands is described. It overcomes the challenges of chemoselectivity and enantioselectivity, achieving a highly enantioselective vicinal sulfonyl-esterification reaction of alkenes involving sulfur dioxide. This strategy involves the use of earth-abundant metal catalyst, mild reaction conditions, a broad range of substrates (84 examples), high yields (up to 97% yield), and exceptional control over enantioselectivity. The reaction system is compatible with different types of radical precursors, including O-acylhydroxylamines, cycloketone oxime esters, aryldiazonium salts, and drug molecules. Chiral ligand PyBim is identified as particularly effective in achieving the desired high enantioselectivity. Mechanistic studies reveal that copper/PyBim system plays a vital role in C─O coupling, employing an outer-sphere model. In addition, the side arm effect of ligand is observed.

20.
Front Chem ; 12: 1376948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487782

RESUMO

The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA