Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(14): 9088-9094, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37310179

RESUMO

The ADRA2A-1291 C > G polymorphism and deficits in visual memory and inhibitory control were associated with attention deficit hyperactivity disorder (ADHD). The present study aimed to examine whether the ADRA2A G/G genotype affected gray matter (GM) networks in ADHD and whether these gene-brain modulations were associated with cognitive function in ADHD. Seventy-five drug-naïve ADHD children and 70 healthy controls were recruited. The GM networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Visual memory and inhibitory control were assessed by the visual memory test and the Stroop test, respectively. SNP genotyping of rs1800544 was performed. A significant interaction between ADHD diagnosis and gene polymorphism was observed in the nodal degree of the left inferior parietal lobule and left inferior (opercular) frontal gyrus. In the ADHD group, nodal efficiency in the left inferior (orbital) frontal gyrus in ADHD with G/G was lower than that in ADHD without G/G. Moreover, the ADRA2A-modulated alterations in nodal properties were associated with visual memory and inhibitory control. Our findings provide novel gene-brain behavior association evidence that GM network alterations, especially in the frontoparietal loop, were related to visual memory and inhibitory control in ADHD children with ADRA2A-G/G.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Cinzenta , Humanos , Criança , Substância Cinzenta/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Polimorfismo Genético , Encéfalo/diagnóstico por imagem , Cognição , Receptores Adrenérgicos , Imageamento por Ressonância Magnética
2.
J Neurodev Disord ; 12(1): 2, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941438

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a mutation in one copy of the neurofibromin gene (NF1+/-). Even though approximately 40-60% of children with NF1 meet the criteria for attention deficit hyperactivity disorder (ADHD), very few preclinical studies, if any, have investigated alterations in impulsivity and risk-taking behavior. Mice with deletion of a single NF1 gene (Nf1+/-) recapitulate many of the phenotypes of NF1 patients. METHODS: We compared wild-type (WT) and Nf1+/- mouse strains to investigate differences in impulsivity and hyperactivity using the delay discounting task (DDT), cliff avoidance reaction (CAR) test, and open field. We also investigated whether treatment with the clinically effective alpha-2A adrenergic receptor agonist, guanfacine (0.3 mg/kg, i.p.), would reverse deficits observed in behavioral inhibition. RESULTS: Nf1+/- mice chose a higher percentage of smaller rewards when both 10- and 20-s delays were administered compared to WT mice, suggesting Nf1+/- mice are more impulsive. When treated with guanfacine (0.3 mg/kg, i.p.), Nf1+/- mice exhibited decreased impulsive choice by waiting for the larger, delayed reward. Nf1+/- mice also exhibited deficits in behavioral inhibition compared to WT mice in the CAR test by repetitively entering the outer edge of the platform where they risk falling. Treatment with guanfacine ameliorated these deficits. In addition, Nf1+/- mice exhibited hyperactivity as increased distance was traveled compared to WT controls in the open field. This hyperactivity in Nf1+/- mice was reduced with guanfacine pre-treatment. CONCLUSIONS: Overall, our study confirms that Nf1+/- mice exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD, and can be used as a model system to identify alterations in neural circuitry associated with symptoms of ADHD in children with NF1.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Guanfacina/uso terapêutico , Comportamento Impulsivo/efeitos dos fármacos , Neurofibromatose 1/complicações , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Modelos Animais de Doenças , Guanfacina/farmacologia , Inibição Psicológica , Masculino , Camundongos , Fenótipo , Recompensa
3.
Mol Neurobiol ; 56(6): 4061-4071, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30264294

RESUMO

Testosterone is an anabolic androgenic steroid hormone involved in brain development, reproduction, and social behavior. Several studies have shown that testosterone can cause impulsivity in humans, which in turn, is linked with mood-related psychiatric disorders and higher risk of death by suicide. The mechanisms by which testosterone abuse influences impulsivity are unclear. The present study aims to understand how testosterone influences impulsivity in a rodent model both at behavioral and molecular levels. In this study, rats were either only gonadectomized or gonadectomized and injected with supraphysiological doses of testosterone. Their relative impulsivity levels were assessed using the go/no-go task. Serum level of testosterone was measured using ELISA. Transcript levels of alpha-2A adrenergic receptor (Adra2a), G proteins (stimulatory subunit-Gαs [Gnas], inhibitory subunit-Giα [Gnai1 and Gnai2]), and catalytic and regulatory subunits of protein kinase A (PKA) were examined using quantitative PCR (qPCR) in brain areas associated with limbic system (prefrontal cortex (PFC), hippocampus, and amygdala). The testosterone-treated (T) group showed significantly higher level of serum testosterone and displayed a lower go/no-go ratio, indicating greater impulsivity compared to the gonadectomized (GDX) group. The transcript levels Adra2a and Gαs genes and PKA subunits encoded by Prkar1a, Prkar1b, Prkar2a, and Prkaca genes were significantly upregulated in PFC of testosterone treated rats. The expression levels of these genes were not significantly altered in hippocampus. On the other hand, amygdala showed changes only in Gnas and Prkar2a. These results suggest that chronic testosterone influences impulsivity possibly via hyperactive alpha-2A adrenergic receptor-PKA signaling axis, specifically in the PFC.


Assuntos
Encéfalo/metabolismo , Comportamento Impulsivo/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/genética , Transdução de Sinais , Testosterona/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos Long-Evans , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/administração & dosagem , Testosterona/sangue
4.
J Neurosci ; 38(42): 8922-8942, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30150361

RESUMO

Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α2A-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENT Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.


Assuntos
Ansiedade/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Neurônios/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Núcleos Septais/fisiologia , Estresse Psicológico/fisiopatologia , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Catecolaminas/metabolismo , Feminino , Guanfacina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Septais/diagnóstico por imagem , Núcleos Septais/metabolismo
5.
Psychiatry Investig ; 15(3): 306-312, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29486545

RESUMO

OBJECTIVE: The therapeutic effect of methylphenidate (MPH) in treating attention-deficit/hyperactivity disorder (ADHD) has been related to the alpha-2A adrenergic receptor (ADRA2A) gene -1291C/G single nucleotide polymorphism (SNP). We investigated the effect of MPH in treating Taiwanese children and adolescent with ADHD and its relation to the ADRA2A gene -1291C/G SNP. METHODS: The subjects with DSM-IV ADHD diagnosis underwent a titration period to find out the dose of MPH for maintenance treatment. After 4 weeks maintenance treatment, the effect of MPH was evaluated by the Swanson, Nolan and Pelham version IV total scores. The subjects with more than 25% score reduction were referred to responders and those with ≥50% improvement were considered as better responders. The -1291C/G variant of the ADRA2A gene was identified by DNA sequencing and what relevance it has to the MPH response was examined by binary logistic regression analysis. RESULTS: Of the 59 subjects, 44 (74.6%) were responsive to MPH treatment and the responsiveness was not shown to be associated with the ADRA2A gene -1291C/G SNP. As the responsive subjects were categorized as moderate responders and better responders and subjected to statistical analysis, the GG homozygotes showed a greater chance to have a better response to MPH treatment than CC homozygotes (p=0.02), with an odds ratio of 32.14 (95% CI=1.64-627.80). CONCLUSION: The ADRA2A gene -1291C/G SNP is associated with the efficacy of MPH for the treatment of ADHD in Taiwanese children and adolescents. The responsive subjects bearing homozygous -1291G allele are more likely to have a better response to MPH treatment.

6.
Data Brief ; 7: 8-11, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26952134

RESUMO

The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]).

7.
Eur J Neurosci ; 40(1): 2311-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24674448

RESUMO

How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an 'arousable' sleep-like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine-induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary 'yes-no' response, which after crossing the two mouse strains behaved as a dominant-like trait. We carried out a genome-wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre-established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug-induced hypnosis, may have precise genetic determinants.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Dexmedetomidina/farmacologia , Sono/genética , Vigília/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cromossomos de Mamíferos , Eletroencefalografia , Genes Dominantes , Estudo de Associação Genômica Ampla , Hipnóticos e Sedativos/farmacologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Farmacogenética , Estimulação Física , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/genética , Reflexo de Endireitamento/fisiologia , Teste de Desempenho do Rota-Rod , Sono/efeitos dos fármacos , Sono/fisiologia , Especificidade da Espécie , Vigília/efeitos dos fármacos , Vigília/fisiologia
8.
J Psychiatr Res ; 50: 42-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24360505

RESUMO

Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Dieta , Fluoxetina/análogos & derivados , Fluoxetina/sangue , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Long-Evans , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/sangue , Natação , Ácido alfa-Linolênico/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA