Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 32(6): 1935-1942, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34212597

RESUMO

To clarify the changes of water sources for Caragana intermedia plantations at different ages (4, 9, 17 and 31 years) in response to rainfall in the Gonghe Basin of Qinghai Province, China, we used the stable isotope technique to identify δ2H and δ18O compositions of soil water, xylem water, groundwater, and rain water before and after rainfalls. The proportions of different water sources were calculated by the Iso-Source model. The results showed that the δ2H and δ18O compositions of the shallow soil layer (0-40 cm) of all plantations responded significantly to the precipitation. The isotopic values of plant xylem water, soil water, and groundwater of each plantation were spotted on the lower right of the local meteoric water line (LMWL) either before or after rainfall, with lower intercepts and slopes than LMWL and the global meteoric water line (GMWL). The isotopic compositions of xylem water and soil water of C. intermedia plantations were closer to LMWL after rainfall. The 4- and 9-year-old C. intermedia plantations mainly used shallow soil water, the 17-year-old plantation mainly used middle layer soil water (40-90 cm), and the 31-year-old plantation primarily use deep soil water before rainfall. After rainfall, the shallow soil layer became sources of water absorption for all plantations. The utilization proportions of groundwater for all plantations were only 1.8%-11.9%. In general, water sources of different aged C. intermedia plantations showed similar responses to rainfall, by primarily absorbing the shallow soil water supplied by rainfall and reducing the use of groundwater.


Assuntos
Caragana , China , Chuva , Areia , Solo , Água
2.
Ecol Evol ; 11(6): 2645-2659, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767826

RESUMO

Desertification land in Gonghe Basin of Tibetan Plateau, China accounts for 91.9% of the total land area. Vegetation restoration and reconstruction with desert shrubs in degraded ecosystem are effective ways to prevent and control desertification. However, the evaluation studies of fine root dynamic characteristics of desert shrubs and their contribution to carbon sequestration of plantation are limited. To gain a better understanding of vegetation restoration, the vertical distribution of fine root biomass, fine root decomposition, fine root turnover was investigated, as well as their coupling effect on carbon sequestration of plantation in three desert vegetation. The results estimated that the total decomposition time of fine roots of Salix cheilophila (S. cheilophila), Salix psammophila (S. psammophila), and Salix microstachya (S. microstachya) are 39.00, 27.99 and 35.95 years. Biomass carbon density for three Salix plantations ranged from 1.42 to 2.39 t/hm2, which showed that three Salix plantations in alpine sandy land are an important carbon pool. In addition, fine root biomass carbon density for the three shrub plantations varied significantly. Fine root biomass carbon density for S. psammophila reached the largest among the three plantations, which was 1.48 t/hm2, accounting for the ratio of 62% of the plantation total biomass carbon density. The results indicated that the root system of S. psammophila, especially the fine roots, was very developed, which was conducive to soil water transportation and carbon sequestration. Therefore, S. psammophila might be a better species for carbon sequestration of plantation in alpine sandy areas. The carbon input from the fine roots of the three shrub plantations through decomposition and turnover into the plantations accounts for 11.5% to 15.5% of total carbon sequestration of plantations. Therefore, the fine roots dynamics must be considered for long-term carbon pool estimations in three Salix plantations, otherwise the total carbon sequestration of plantations would be underestimated.

3.
Ecol Evol ; 9(9): 5407-5419, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110689

RESUMO

BACKGROUND AND AIMS: Research into the variability of fine-root decomposition and nutrient cycling processes in arid and semiarid ecosystems is highly significant not only for investigations of regional and global carbon and nitrogen cycling but also for offering a theoretical basis for vegetation restoration and reconstruction. In particular, information is limited on fine-root decomposition processes and nutrient releasing characteristics in the high-altitude Qinghai Gonghe basin, which has different tree species and variable fine-root diameters. MATERIALS AND METHODS: Four types of Salicaceae and Caragana shrubs were selected at the Qinghai Gonghe desert ecosystem research station. The litterbag method was adopted to measure decomposition rates of fine-roots with three diameter classes (1-2 mm, 0.5-1 mm, and 0-0.5 mm). Chemical analysis was performed to determine nutrient (C, N, P, and K) concentrations of fine-root, and nutrient release rates were compared among fine-roots with different diameters during different decomposition periods. The differences in mass residual ratio and nutrient release rate among different diameter classes were studied with one-way ANOVA. RESULTS: Fine-root decomposition rates were in the order Caragana intermedia > Caragana korshinskii > Salix psammophila > Salix cheilophila. Fine-root decomposition showed a trend of "fast-slow-fast" variation, and decomposition rate increased as the diameter of fine-roots increased, irrespective of tree species. During the decomposition process, the nutrients C, N, and P of fine-root were in a release state for the four shrubs with different fine-root diameters, and the corresponding release rates of Caragana shrubs were higher than those of Salicaceae shrubs. Release rates of nutrients C and N accelerated as fine-root diameter increased, whereas release rates of nutrients P and K had no observed relation with fine-root diameter. Fine-root decomposition ratio was significantly correlated with initial values of N, P, C/N, C/P, and N/P of fine-root. Fine-root mass loss ratio was significantly correlated with initial concentration of soil nutrient K, and the correlation was positive for fine-roots with diameters of 0-0.5 mm and 0.5-1 mm; however, no other significant correlation was observed between fine-root mass loss ratio and initial soil environmental factors within this study. CONCLUSIONS: Our study showed that tree species and fine-root diameter strongly affected decomposition rates, whereas diameter class exerted little effect on nutrient release rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA