Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Risk Saf Med ; 35(2): 159-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788092

RESUMO

BACKGROUND: Medical ethics guidelines require of clinical trial investigators and sponsors to inform prospective trial participants of all known and potential risks associated with investigational medical products, and to obtain their free informed consent. These guidelines also require that clinical research be so designed as to minimize harms and maximize benefits. OBJECTIVE: To examine Merck's scientific rationale for using a reactogenic aluminum-containing "placebo" in Gardasil HPV vaccine pre-licensure clinical trials. METHODS: We examined the informed consent form and the recruitment brochure for the FUTURE II Gardasil vaccine trial conducted in Denmark; and we interviewed several FUTURE II trial participants and their treating physicians. We also reviewed regulatory documentation related to Gardasil vaccine approval process and the guidelines on evaluation of adjuvants used in human vaccines. RESULTS: It was found that the vaccine manufacturer Merck made several inaccurate statements to trial participants that compromised their right to informed consent. First, even though the study protocol listed safety testing as one of the study's primary objectives, the recruitment brochure emphasized that FUTURE II was not a safety study, and that the vaccine had already been proven safe. Second, the advertising material for the trial and the informed consent forms stated that the placebo was saline or an inactive substance, when, in fact, it contained Merck's proprietary highly reactogenic aluminum adjuvant which does not appear to have been properly evaluated for safety. Several trial participants experienced chronic disabling symptoms, including some randomized to the adjuvant "placebo" group. CONCLUSION: In our view, the administration of a reactive placebo in Gardasil clinical trials was without any possible benefit, needlessly exposed study subjects to risks, and was therefore a violation of medical ethics. The routine use of aluminum adjuvants as "placebos" in vaccine clinical trials is inappropriate as it hinders the discovery of vaccine-related safety signals.


Assuntos
Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18 , Consentimento Livre e Esclarecido , Humanos , Consentimento Livre e Esclarecido/ética , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/administração & dosagem , Dinamarca , Placebos/administração & dosagem , Feminino , Vacinas contra Papillomavirus/administração & dosagem , Infecções por Papillomavirus/prevenção & controle
2.
Toxicol Mech Methods ; 34(7): 813-820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38717917

RESUMO

For nearly 90 years, aluminum (Al) salts have been utilized as vaccination adjuvants. Nevertheless, there is a risk of adverse effects associated with the amount of nanoaluminum used in various national pediatric immunization regimens. This study aimed to investigate the possible genotoxic effects of nanoaluminum incorporated in human vaccines on the brains of newborn albino rats and whether nanocurcumin has a potential protective effect against this toxicity. Fifty newborn albino rats were randomly assigned to 5 groups, with 10 in each group. Groups 1 and 2 received "high" and "low" Al injections corresponding to either the American or Scandinavian pediatric immunization schedules, respectively, as opposed to the control rats (group 5) that received saline injections. Groups 3 and 4 received the same regimens as groups 1 and 2 in addition to oral nanocurcumin. The expression of both the cell breakdown gene tumor protein (P53) and the cell stress gene uncoupling protein 2 (UCP2) was significantly greater in groups 1 and 2 than in group 5. Groups 1 and 2 exhibited severe DNA fragmentation, which was observed as DNA laddering. Nanocurcumin significantly reduced the expression of the P53 and UCP2 genes in groups 3 and 4, with very low or undetectable DNA laddering in both groups. Vaccination with nanoaluminum adjuvants can cause genotoxic effects, which can be mediated by the inflammatory response and oxidative stress, and nanocurcumin can protect against these toxic effects through the modulation of oxidative stress regulators and gene expression.


Assuntos
Adjuvantes Imunológicos , Curcumina , Animais , Ratos , Adjuvantes Imunológicos/toxicidade , Compostos de Alumínio/toxicidade , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Curcumina/farmacologia , Curcumina/química , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Nanopartículas/toxicidade , Ratos Wistar , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vacinas/toxicidade
3.
Biol Trace Elem Res ; 202(10): 4640-4653, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38273184

RESUMO

The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.


Assuntos
Adjuvantes Imunológicos , Nanopartículas , Selênio , Animais , Selênio/química , Selênio/farmacologia , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Nanopartículas/química , Alumínio/química , Alumínio/farmacologia , Feminino , Camundongos Endogâmicos BALB C , Clostridium perfringens , Tamanho da Partícula
4.
Heliyon ; 9(8): e18800, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560692

RESUMO

Aluminum salts are by far the most widely used adjuvants for human vaccines, showing acceptable safety and efficacy. Previous studies have shown that each aluminum adjuvant have different charges and morphologies, but whether the manufacturing and production processes affects the physicochemical properties of aluminum adjuvant has not yet been reported. In this study, we explored the physical and chemical properties of different aluminum adjuvants and Hib, sIPV antigens through particle size, zeta potential and morphological characteristics. The adsorption rate and efficacy were also investigated. The results showed that the preparation process had an impact on the physical and chemical properties of aluminum adjuvants, including differences in the particle size,zeta potential and morphological structure. Hib vaccine had larger particle size than sIPV vaccine with different aluminum adjuvants in the process of vaccine preparation. In addition, by measuring the adsorption rate, increasing the concentration of phosphate or Aluminum phosphate (AP) can improve the adsorption rate of Hib, but Aluminium hydroxide (AH) and amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvants are not affected. In vivo result showed that increasing the adsorption rate of Hib could enhance the Hib-IgG antibody titers. In conclusion, this study provides a reference for the application of adjuvants in vaccines by studying the physicochemical properties and adsorption conditions of different aluminum adjuvants and antigens.

5.
Vaccine ; 41(35): 5113-5125, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321893

RESUMO

Development of a vaccine drug product requires formulation optimization to ensure that the vaccine's effectiveness is preserved upon storage throughout the shelf-life of the product. Although aluminum adjuvants have been widely used in vaccine formulations to safely and effectively potentiate an immune response, careful attention must be directed towards ensuring that the type of aluminum adjuvant does not impact the stability of the antigenic composition. PCV15 is a polysaccharide-protein conjugate vaccine comprising the pneumococcal polysaccharide (PnPs) serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F), each individually conjugated to the protein carrier CRM197. PCV15 was formulated with either amorphous aluminum hydroxyphosphate sulfate adjuvant (AAHS) or aluminum phosphate adjuvant (AP) and examined for both stability and immunogenicity. Using a collection of methods to evaluate vaccine stability, it was discovered that certain PCV15 serotypes (e.g., 6A, 19A, 19F) formulated with AAHS resulted in a reduction of immunogenicity in vivo and a reduction in recoverable dose as tested by an in vitro potency assay. The same polysaccharide-protein conjugates formulated with AP were stable regarding all measures tested. Moreover, the reduction in potency of certain serotypes correlated with chemical degradation of the polysaccharide antigen caused by the aluminum adjuvant as measured by reducing polyacrylamide gel electrophoresis (SDS-PAGE), High-Pressure Size Exclusion Chromatography coupled with UV detection (HPSEC-UV) and ELISA immunoassay. This study suggests a formulation, which includes AAHS, may negatively impact the stability of a pneumococcal polysaccharide-protein conjugate vaccine that contains phosphodiester groups. This decrease in stability would likely result in a decrease in the "active" concentration of antigen dose, and herein, it is shown that such instability directly compromised vaccine immunogenicity in an animal model. The results presented in this study help to explain critical degradation mechanisms of pneumococcal polysaccharide-protein conjugate vaccines.


Assuntos
Alumínio , Infecções Pneumocócicas , Animais , Vacinas Conjugadas , Vacinas Pneumocócicas , Sorogrupo , Adjuvantes Imunológicos , Infecções Pneumocócicas/prevenção & controle , Anticorpos Antibacterianos
6.
J Control Release ; 354: 770-783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702259

RESUMO

The poor cancer immunotherapy outcome has been closely related to immunosuppressive tumor microenvironment (TME), which usually inactivates the antitumor immune cells and leads to immune tolerance. Metalloimmunotherapy by supplementing nutritional metal ions into TME has emerged as a potential strategy to activate the tumor-resident immune cells. Herein, we engineered a magnesium-contained nano-aluminum adjuvant (NanoAlum) through hydrolyzing a mixture of Mg(OH)2 and Al(OH)3, which has highly similar components to commercial Imject Alum. Peritumoral injection of NanoAlum effectively neutralized the acidic TME while releasing Mg2+ to activate the tumor-resident T cells. Meanwhile, NanoAlum also blocked the autophagy pathway in tumor cells and subsequently induced cell apoptosis. The in vivo studies showed that merely peritumoral injection of NanoAlum successfully inhibited the growth of solid tumors in mice. On this basis, NanoAlum combined with chemical drug methotrexate or immunomodulatory adjuvant CpG further induced potent antigen-specific antitumor immunity. Overall, our study first provides a rational design for engineering tumor-targeted nanomodulator from clinical adjuvants to achieve effective cancer metalloimmunotherapy against solid tumors.


Assuntos
Alumínio , Neoplasias , Animais , Camundongos , Alumínio/farmacologia , Alumínio/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Linfócitos T , Adjuvantes Farmacêuticos/farmacologia , Microambiente Tumoral
7.
Pharm Res ; 40(6): 1435-1446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36414838

RESUMO

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.


Assuntos
Adjuvantes Imunológicos , Alumínio , Alumínio/química , Adjuvantes Imunológicos/química , Antígenos/química
8.
Toxics ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36136483

RESUMO

Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.

9.
Vaccine ; 40(33): 4881-4888, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810062

RESUMO

Aluminum salts have been used as adjuvants in human vaccines since 1932. The most used adjuvants are Al oxyhydroxide (AlOOH) and Al hydroxyphosphate (AlOHPO4). Al adjuvants have different physico-chemical properties. The differences in these properties are not well documented and not considered by the Food and Drug Administration (FDA), though they can largely influence biological effects of the adjuvants which are particulate components. In this study, different physico-chemical properties including the shape, size and charge of particles have been evaluated under different conditions in three Al adjuvants containing-vaccines and two corresponding commercial adjuvants suspensions. The results showed that the two Al adjuvants have different shapes, sizes and charges but both form aggregates. In addition, a clear effect of dilution on the size of the aggregates was observed. Moreover, different sizes of Al particles were measured for both Al oxyhydroxide adjuvant alone or in the vaccine, at identical concentrations, displaying the impact of adsorbed proteins on the size of aggregates in the case of the vaccine. Taken together, this paper suggests the importance to evaluate, before any biological and especially toxicological impact study, the whole physico-chemical properties of Al particle without restricting to the sole evaluation of the injected concentration. Furthermore, any modification of these mentioned parameters during manipulation, before animal or cell exposure, should be considered. In a more global way, the fixed "safe dose" of Al adjuvants should be specific for each type of Al adjuvant independently or for a mix of the two compounds, due to their different properties.


Assuntos
Alumínio , Vacinas , Adjuvantes Imunológicos/química , Compostos de Alumínio/química , Compostos de Alumínio/toxicidade , Hidróxido de Alumínio , Animais , Humanos
10.
Saudi Pharm J ; 30(5): 595-604, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693445

RESUMO

Anthrax is a zoonotic infection caused by the gram-positive, aerobic, spore-forming bacterium Bacillus anthracis. Depending on the origin of the infection, serious health problems or mortality is possible. The virulence of B. anthracis is reliant on three pathogenic factors, which are secreted upon infection: protective antigen (PA), lethal factor (LF), and edema factor (EF). Systemic illness results from LF and EF entering cells through the formation of a complex with the heptameric form of PA, bound to the membrane of infected cells through its receptor. The currently available anthrax vaccines have multiple drawbacks, and recombinant PA is considered a promising second-generation vaccine candidate. However, the inherent chemical instability of PA through Asn deamidation at multiple sites prevents its use after long-term storage owing to loss of potency. Moreover, there is a distinct possibility of B. anthracis being used as a bioweapon; thus, the developed vaccine should remain efficacious and stable over the long-term. Second-generation anthrax vaccines with appropriate adjuvant formulations for enhanced immunogenicity and safety are desired. In this article, using protein engineering approaches, we have reviewed the stabilization of anthrax vaccine candidates that are currently licensed or under preclinical and clinical trials. We have also proposed a formulation to enhance recombinant PA vaccine potency via adjuvant formulation.

11.
J Trace Elem Med Biol ; 66: 126764, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930617

RESUMO

The manuscript reviews the association between aluminum adjuvants (AlAd) in vaccines and autism spectrum disorder (ASD). Aluminum (Al) is neurotoxic. Infants who have received AlAd in vaccines show a higher rate of ASD. The behavior of mice changes with Al injection. Patients suffering from ASD have higher concentrations of Al in their brains. Thus, AlAd is an etiologic factor in ASD. Immune efficacy led to the use of the AlAd in vaccines; however, the safety of those who are vaccinated with such vaccines has not been considered. The mechanisms of action of AlAd and the pharmacodynamics of injected AlAd used in vaccines are not well-characterized. The association between aluminum adjuvants in the vaccines and autism spectrum disorder is suggested by multiple lines of evidence.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Alumínio/efeitos adversos , Transtorno do Espectro Autista/terapia , Vacinas/efeitos adversos , Alumínio/imunologia , Animais , Transtorno do Espectro Autista/imunologia , Humanos , Vacinas/imunologia
12.
J Pharm Biomed Anal ; 198: 114013, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33713883

RESUMO

The focus of this study was to examine the small-scale adsorption process of Tetanus Toxoid (TT) as a model protein antigen to aluminum phosphate (AlPO4) and aluminum oxyhydroxide (AlOOH) adjuvants with real-time monitoring by in-line ReactIR™, ParticleTrack™ based on Focused Beam Reflectance Measurement (FBRM) and EasyViewer™ probes. The adsorption process of AlPO4 and AlOOH with TT using was monitored in the small-scale reactors. Conformational changes in TT were monitored using in-line infrared probe ReactIR, whereas particle formation associated with protein adsorption were measured by particle size, count, and imaging tools, such as ParticleTrack with FBRM and EasyViewer probes. ParticleTrack distribution results and kinetic measurements were also supported by observations made using EasyViewer. In addition to EasyMax, BioBLU reactor was also used for the adsorption experiments. ReactIR with ATR-Fiber probe was effectively able to monitor adsorption progress of TT to AlOOH and to AlPO4. ReactIR, EasyViewer, and ParticleTrack provided detailed mechanistic and kinetic information for reaction of TT with AlPO4 and AlOOH. These in-situ measurements revealed a possible multi-step process for TT to AlPO4 which may be an indication of antigen adsorption.


Assuntos
Adjuvantes Imunológicos , Alumínio , Adsorção , Tamanho da Partícula , Toxoide Tetânico
13.
Magn Reson Chem ; 59(2): 147-161, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32888244

RESUMO

Suspensions of solid particles find applications in many areas-mining, waste treatment, and in pharmaceutical formulations. Pharmaceutical suspensions include aluminum-adjuvanted vaccines are widely administered to millions of people worldwide annually. Hence, the stability parameters of such suspensions, for example, sedimentation rate and the compactness of the formed sediments, are of great interest to achieve the most optimal and stable formulations. Unlike currently used analytical techniques involving visual observations and/or monitoring of several optical properties using specialized glassware, water proton nuclear magnetic resonance (wNMR) used in this work allows one to analyze samples in their original sealed container regardless of its opacity and/or labeling. It was demonstrated that the water proton transverse relaxation rate could be used to monitor in real time the sedimentation process of two widely used aluminum adjuvants-Alhydrogel® and Adju-Phos®. Using wNMR, we obtained valuable information on the sedimentation rate, dynamics of the supernatant and sediment formation, and the sedimentation volume ratio (SVR) reflecting the compactness of the formed sediment. Results on SVR from wNMR were verified by caliper measurements. Verification of the sedimentation rate results from wNMR by other analytical techniques is challenging due to differences in the measured attributes and even units of the reported rate. Nonetheless, our results demonstrate the practical applicability of wNMR as an analytical tool to study pharmaceutical suspensions, for example, aluminum-adjuvanted vaccines, to provide higher quality and more efficient vaccines. Such analyses could be carried out in the original container of a suspension drug product to study its colloidal stability and to monitor its quality over time without compromising product integrity.


Assuntos
Adjuvantes Imunológicos/química , Compostos de Alumínio/química , Hidróxido de Alumínio/química , Fosfatos/química , Água/química , Cinética , Fenômenos Físicos , Espectroscopia de Prótons por Ressonância Magnética
14.
Mol Pharm ; 13(5): 1731-7, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26998680

RESUMO

Most vaccines contain aluminum adjuvants; however, their exact mechanism of action remains unclear. A novel mechanism by Shi and colleagues proposes aluminum adjuvants may enhance immune activation by binding and reorganizing lipids that are key components of lipid rafts. To better understand the specificity of interaction between aluminum adjuvants and the cell membrane lipids, we present a biophysical study of lipid domain clustering in simple model phospholipid monolayers containing dipalmitoyl-phosphatidylcholine (DPPC) and dioleoyl-phosphatidylcholine (DOPC) exposed to two aluminum adjuvants, Alhydrogel and Adju-Phos. Surface pressure measurements and fluorescence microscopy images verified aluminum adjuvant-induced increase in lipid domain size, even in the key lipid raft components. Additionally, adjuvant induced lipid clustering differed based on the physicochemical properties of the adjuvants. Alhydrogel appeared to reduce monolayer compressibility and insert into the monolayer, while Adju-Phos induced more significant changes in domain size, without compromising the integrity of the monolayer. The Alhydrogel and Adju-Phos-mediated reorganization of phospholipid domains reported here supports the new mechanistic paradigm proposed by Shi and co-workers, and further suggests that lipid clustering is induced even in simple phospholipid membranes. The results present the basis for future exploration into lipid-mediated mechanisms of action for adjuvants.


Assuntos
Adjuvantes Farmacêuticos/química , Alumínio/química , Microdomínios da Membrana/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adjuvantes Imunológicos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Fosfatidilcolinas/química
15.
Front Chem ; 4: 48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119911

RESUMO

The physicochemical properties of aluminum salts are key determinants of their resultant adjuvanticity in vivo when administered as part of a vaccine. While there are links between particle size and the efficacy of the immune response, the limited literature directly characterizing the PSD of aluminum adjuvants has stymied the elucidation of such a relationship for these materials. Hence, this comparative study was undertaken to monitor the PSD of aluminum adjuvants throughout the process of vaccine formulation using DLS. A significant proportion of the stock suspensions was highly agglomerated (>9 µm) and Alhydrogel® exhibited the smallest median size (2677 ± 120 nm) in comparison to Adju-Phos® or Imject alum® (7152 ± 308 and 7294 ± 146 nm respectively) despite its large polydispersity index (PDI). Dilution of these materials induced some degree of disaggregation within all samples with Adju-Phos® being the most significantly affected. The presence of BSA caused the median size of Alhydrogel® to increase but these trends were not evident when model vaccines were formulated with either Adju-Phos® or Imject alum®. Nevertheless, Alhydrogel® and Adju-Phos® exhibited comparable median sizes in the presence of this protein (4194 ± 466 and 4850 ± 501 nm respectively) with Imject alum® being considerably smaller (2155 ± 485 nm). These results suggest that the PSD of aluminum adjuvants is greatly influenced by dilution and the degree of protein adsorption experienced within the vaccine itself. The size of the resultant antigen-adjuvant complex may be important for its immunological recognition and subsequent clearance from the injection site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA