Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.788
Filtrar
1.
J Environ Sci (China) ; 149: 444-455, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181656

RESUMO

Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.


Assuntos
Aerossóis , Poluentes Atmosféricos , Aminas , Ozônio , Estireno , Ozônio/química , Aminas/química , Aminas/toxicidade , Cinética , Estireno/química , Estireno/toxicidade , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Humanos , Oxirredução , Modelos Químicos
2.
Food Chem ; 460(Pt 3): 140576, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39106755

RESUMO

The inhibition of amino acids on the formation of protein-bound HAs was assessed in both model systems and roast beef patties, and the synergism between these amino acids was also investigated. The amino acids can promote the formation of protein-bound HAs at low addition amount, and the total content of protein-bound HAs increased from 444.05 ± 4.98 ng/g of the control group to 517.36 ± 16.51 ng/g when 0.05 % cysteine was added. Amino acid combinations exhibited stable inhibitory effects, with the maximum inhibitory rate of 64 % in the treatment with histidine-proline combination (1:4). The synergistic inhibition may be caused by simultaneously scavenging intermediates and competing for the binding sites of muscle proteins, and the reaction with protein-bound HAs to form adduct can serve as supporting factors to co-mitigate the promotion in protein-bound HAs from increased protein solubility. These findings proposed the potential mitigation strategies against protein-bound HAs formation.

3.
J Fluoresc ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110354

RESUMO

Biogenic amines, produced by bacterial enzymatic reactions in food storage or processing, serve as indicators in food processing industries to assess food quality and freshness. Biogenic amines also often associated with various health problems, including abnormal immune responses and gastrointestinal disease. Previously, salphen base complexes have been reported but still exhibited low fluorescence enhancement upon biogenic amines. This research focused on synthesizing and characterizing new Zn(II) Schiff base complex with indole sidechain to enhance the fluorescence property and exploring their binding behaviour with the biogenic amines, which were phenylethylamine and cadaverine. The Zn(II) indole Schiff base complex's structure was verified by diverse spectroscopic techniques. Then, the binding behaviours between the Zn(II) indole Schiff base complex with the biogenic amines were analyzed using UV-Vis, fluorescence spectroscopy, and Job's plot analysis. UV-Vis binding study results indicated that the synthesized complexes could bind stronger with phenylethylamine than cadaverine, with binding constant, Kb= (8.21 ± 0.58) × 104 M- 1 and (2.506 ± 0.004) × 104 M- 1 respectively. Moreover, Zn(II) indole Schiff base complex-phenylethylamine binding also generated higher fluorescence enhancement than cadaverine, which were 54% and 51% respectively. Based on Job's plot analysis, the complex and biogenic amines were bound in the ratio of 1:1. To conclude, the synthesized complex has promising potential as a sensing material for biogenic amines detection in food. The complex is recommended to be deployed in the development of solid-state fluorescence sensor for biogenic amines detection for monitoring the food spoilage in the food industry in the future.

4.
Front Pharmacol ; 15: 1428409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156106

RESUMO

Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.

5.
ChemSusChem ; : e202401550, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189946

RESUMO

Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.

6.
Food Sci Biotechnol ; 33(12): 2755-2760, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184985

RESUMO

This study represents a visual detection for total biogenic monoamines with naked eye as a simple and rapid semi-quantitative method for biogenic amine monitoring. The equivalent reaction of H2O2 with ascorbic acid resulted in color development by an amine oxidase-peroxidase coupling reaction in the samples containing the biogenic monoamines higher than the subjected ascorbic acid by 10 µM. Upon employing the commercial doenjang extracts as a model food, an additional heating step was requested, and the expected ranges for the biogenic monoamines from 360 to 480 µM covered the real contents of the samples (360.2-407.3 µM). Therefore, this visual detection method makes it possible to decide with naked eye whether the sample contains the biogenic monoamines higher than the ascorbic acid supplemented as much as a control level on manufacturing sites without instrumental analysis.

7.
Exp Parasitol ; 265: 108821, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128576

RESUMO

The dynamic properties of neural systems throughout life can be hijacked by so-called manipulative parasites. This study investigated changes in the brain chemistry of the amphipod Gammarus fossarum in response to infection with two trophically-transmitted helminth parasites known to induce distinct behavioral alterations: the bird acanthocephalan Polymorphus minutus and the fish acanthocephalan Pomphorhynchus tereticollis. We quantified brain antioxidant capacity as a common marker of homeostasis and neuroprotection, and brain total protein, on 72 pools of six brains. We analyzed the concentration of serotonin (5HT), dopamine (DA) and tyramine in 52 pools of six brains, by using ultrafast high performance liquid chromatography with electrochemical detection (UHPLC-ECD). Brain total protein concentration scaled hypo-allometrically to dry body weight, and was increased in infected gammarids compared to uninfected ones. The brain of gammarids infected with P. minutus had significantly lower total antioxidant capacity relative to total proteins. Infection with P. tereticollis impacted DA level compared to uninfected ones, and in opposite direction between spring and summer. Brain 5HT level was higher in summer compared to spring independently of infection status, and was decreased by infection after correcting for brain total protein concentration estimated from dry whole-body weight. The potential implication of 5HT/DA balance in parasite manipulation, as a major modulator of the reward-punishment axis, is discussed. Taken together, these findings highlight the need to consider both brain homeostatic and/or structural changes (antioxidant and total protein content) together with neurotransmission balance and flexibility, in studies investigating the impact of parasites on brain and behavior.

8.
Food Chem ; 460(Pt 3): 140754, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39121762

RESUMO

The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.

9.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126090

RESUMO

Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.


Assuntos
Lacase , Oenococcus , Oenococcus/enzimologia , Oenococcus/genética , Lacase/metabolismo , Lacase/genética , Lacase/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Cinética , Modelos Moleculares , Cristalografia por Raios X , Concentração de Íons de Hidrogênio
10.
Eur J Pharmacol ; 981: 176895, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153650

RESUMO

BACKGROUND: Substantial evidence indicates trace amines can induce vasoconstriction independently of noradrenaline release. However, the mechanism underlying noradrenaline-independent vasoconstrictor responses to trace amines has not yet been established. This study evaluates the role of trace amine-associated receptor 1 (TAAR1) and other biogenic amine receptors in mediating ß-phenylethylamine and the TAAR-1 selective agonist RO5256390-induced vasoconstriction. METHODS: Vasoconstrictor responses to ß-PEA and the TAAR1-selective agonist, RO5256390 were assessed in vitro in endothelium-denuded aortic rings and third-order mesenteric arteries of male Sprague Dawley rats. RESULTS: ß-PEA and RO5256390 induced concentration-dependent vasoconstriction of aortic rings but not third-order mesenteric arteries. Vasoconstrictor responses in aortic rings were insensitive to antagonists of 5-HT. The murine-selective TAAR1 antagonist, EPPTB, had no effect on either ß-PEA or RO5256390-induced vasoconstriction. The α1-adrenoceptor antagonist, prazosin, and the α2-adrenoceptor antagonist, yohimbine, induced a shift of the ß-PEA concentration response curve too small to be ascribed to antagonism of α1-or α2-adrenoceptors, respectively. The α2-adrenoceptor antagonist atipamezole had no effect on ß-PEA or RO5256390-induced vasoconstriction. CONCLUSION: Vasoconstrictor responses to trace amines are not mediated by classical biogenic amine neurotransmitter receptors. Insensitivity of ß-PEA vasoconstrictor responses to EPPTB, may be explained by its low affinity for rat rather than murine TAAR1. Therefore, TAAR1 remains the most likely candidate receptor mediating vasoconstrictor responses to trace amines and that prazosin and yohimbine have low affinity for TAAR1.

11.
Food Chem ; 461: 140852, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39167946

RESUMO

Foodborne heterocyclic aromatic amines (HAAs) are potent mutagens and carcinogens, posing significant health risks. Existing enrichment methods for HAAs need better adsorption selectivity and capacity for daily exposure assessment. This study hypothesized that introducing carboxylic groups into magnetic covalent organic frameworks (m-COFs) would improve HAAs adsorption by providing additional binding sites. Hence, we prepared a novel magnetic adsorbent, termed as Fe3O4@DOPA-TpPa-(COOH)2 capable of enhancing the HAAs detection through magnetic solid-phase extraction (MSPE) coupled with UPLC-MS. This sorbent demonstrated a large specific surface area (130.7 m2/g), high magnetic responsivity (21.05 emu/g), and robust stability, with an adsorption capacity (Qm[cal]: 81.82 mg/g) driven by electrostatic, LP - π/C-H - π interactions, and hydrogen bonding. Optimal MSPE conditions provided sensitive detection with a broad linear range (5-500 ng/mL), low limits of detection (0.01-7.01 ng/g), and excellent repeatability. Application to Cantonese mooncake samples showed satisfactory recoveries (62.12%-126.86%). This method offers a more accurate tool for detecting HAAs.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39173322

RESUMO

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.

13.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123642

RESUMO

Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.

14.
Foods ; 13(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39123648

RESUMO

Cocoa (Theobroma cacao, L.) represents an important market that gained relevance and became an esteemed commodity thanks to cocoa powder, chocolate, and other related products. This work analyzed 59 cocoa powder samples from the European market. Three distinct subgroups were identified: organic or conventional, alkalized or not alkalized, and raw or roasted processing. The impact of the technological process on their pH, color, and compositional traits, as well as their content of biogenic amines and salsolinol, was evaluated. The phenolic fraction was also investigated through both common and emerging methods. The results depict that the influence of the agronomical practices (organic/conventional) did not significantly (p < 0.05) affect the composition of the cocoa powders; similarly, the roasting process was not a determinant of the compounds traced. On the other hand, the alkalinization process greatly impacted color and pH, no matter the cocoa's provenience or obtention or other processes, also resulting in reducing the phenolic fraction of the treated samples. Principal component analysis confirmed that the alkali process acts on pH, color, and phenolic composition but not on the content of other bioactive molecules (biogenic amines and salsolinol). All the samples were safe, while the alkalized powders saw a great reduction in beneficial biocompounds. A novel strategy could be to emphasize on the label whether cocoa powder is non-alkalized to meet the demand for more beneficial products.

15.
Food Sci Biotechnol ; 33(10): 2399-2415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145124

RESUMO

The levels of acrylamide (AA), four polycyclic aromatic hydrocarbons (PAH4), and heterocyclic aromatic amines (HAAs) in 184 air-fried agricultural, fishery, and animal products were measured using GC-MS and UPLC-MS/MS. Among the tested samples, sea algae exhibited the highest levels of PAH4 and eight specific HAAs (HAA8), while root and tuber crops had the greatest amount of AA. Agricultural and fisheries products had higher levels of all three contaminants, while livestock products had an inverse correlation between PAH4 and HAA8. The margin of exposure in the Korean population is considered "unlikely a concern" for all samples for PAH4 and HAA8, however, that for AA in cereal, vegetable, and root and tuber crops is deemed "may be a concern", with a value < 10,000 in all age groups. These findings suggest a need to evaluate dietary AA exposure in certain food categories and further research to minimize AA formation during air frying. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01639-4.

16.
Food Sci Biotechnol ; 33(10): 2301-2312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145125

RESUMO

This study analyzed biogenic amine (BA) content in three varieties (types) of kimchi (Baechu kimchi, Baek kimchi, and Yeolmu kimchi), identified the causative bacteria, and evaluated the gene expression associated with the BA formation during kimchi fermentation at 4 °C. Histamine content exceeding the toxicity limit was detected in a single Baechu kimchi product. Tyramine content in most Baechu kimchi products was approximately half of the toxicity limit. Other varieties had relatively lower BA content. Most BA producers isolated from all kimchi varieties were identified as Levilactobacillus brevis, which prominently produced tyramine. To clarify the role of L. brevis in tyramine formation in Baechu kimchi, fermentation experiments were performed using L. brevis BC1M20. The results showed that tyramine content and tyrosine decarboxylase gene (tdc) expression were higher in the inoculated kimchi than in the control. In addition, in the inoculated kimchi, the content decreased while the expression level was almost constant. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01627-8.

17.
Food Sci Biotechnol ; 33(10): 2289-2299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145128

RESUMO

This study aimed to reveal the impact of bacterial dynamics on the quality and biogenic amine (BA) accumulation of dry-cured Chinese bacon (Larou). Physicochemical parameters, free amino acids, BAs, amino acid decarboxylase, and microbial profiles were determined, and their relationships were explored during Larou ripening and storage. The results showed that moisture and sodium nitrite decreased significantly during the Larou ripening stage (p < 0.05), while pH, NaCl, TBARS, and total volatile basic nitrogen considerably increased (p < 0.05). BAs were mainly formed during the stages of dry-ripening and storage of Larou and may present a risk of tyramine and phenylethylamine poisoning. Firmicutes and Actinobacteriota were the predominant phyla, and the dominant genera were Staphylococcus, Corynebacterium and Lactococcus. Correlation analysis showed Corynebacterium, Brevibacterium, Lactobacillus, Tetragenococcus and Staphylococci spp. played a crucial role in determining the quality and safety of Larou. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01472-1.

18.
Angew Chem Int Ed Engl ; : e202408287, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994685

RESUMO

Transformations enabling the synthesis of α-alkyl, α'-2-azinyl amines by addition of 2-heteroaryl-based nucleophiles to in situ-generated and non-activated alkyl-substituted iminium ions are extremely rare. Approaches involving classical 2-azinyl organometallics, such as the corresponding Grignard reagents, often fail to produce the desired products. Here, we report an operationally straightforward solution to this problem through the development of a multicomponent coupling process wherein a soft 2-azinyl indium nucleophile, generated in situ from the corresponding 2-iodo heteroarene and indium powder, adds to an iminium ion that is also formed directly in the reaction. This modular carbonyl azinylative amination (CAzA) displays a broad scope and only a metal reductant is needed to generate a reactive 2-azinyl nucleophile. Beyond the addition to iminium ions, the 2-azinyl addition to polyfluoromethyl ketones forms the corresponding tertiary alcohols. Together, the products of these reactions possess a high degree of functionality, are typically challenging to synthesize by other methods, and contain motifs recognized as privileged in the context of pharmaceuticals and agrochemicals.

19.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001024

RESUMO

Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best candidates for preparing molecular sensor devices owing to their luminescent and molecular recognition properties, the development of CP-based sensor devices is still in its early stages. In this study, we herein propose a novel strategy for preparing a chemical stimuli-responsive solid-state emission system based on supramacromolecular assembly-induced emission enhancement (SmAIEE). The system was spontaneously developed by mixing only the component polymers (i.e., polythiophene and a transient cross-linking polymer). The proposed strategy can be applied to the facile preparation of molecular sensor devices. The analyte-induced fluorescent response of polythiophene originated from the dynamic displacement of the transient cross-linker in the polythiophene ensemble and the generation of the polythiophene-analyte complex. Our successful demonstration of the spontaneous preparation of the fluorescence sensor system by mixing two component polymers could lead to the development of on-site molecular analyzers including the determination of multiple analytes.

20.
Chemistry ; : e202402380, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011613

RESUMO

N-heterocyclic compounds have a broad range of applications and their selective synthesis is very appealing for the pharmaceutical and agrochemical industries. Herein we report the usage of the flavin-dependent nitroreductase BaNTR1 for the photoenzymatic synthesis of various anthranils and quinolines from retro-synthetically designed o-nitrophenyl-substituted carbonyl substrates, achieving high conversions (up to >99%) and good product yields (up to 96%). Whereas the effective production of anthranils required the inclusion of H2O2 in the reaction mixtures to accumulate the needed hydroxylamine intermediates, the formation of quinolines required the use of anaerobic or reducing conditions to efficiently generate the essential amine intermediates. Critical to our success was the high chemoselectivity of BaNTR1, performing selective reduction of the nitro group without reduction of the carbonyl moiety or the activated carbon-carbon double bond. The results highlight the usefulness of an innocuous chlorophyll- and nitroreductase-based photoenzymatic system for the tailored synthesis of diverse N-heterocycles from simple nitro compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA