Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.675
Filtrar
1.
Turk J Pharm Sci ; 21(3): 174-183, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994797

RESUMO

Objectives: Dysregulation of proteolysis underlies diseases like cancer. Protease inhibitors (PIs) regulate many biological functions and hence have potential anticancer properties. With this background, the current study aimed to identify the PI from natural sources such as plants and microbes against trypsin (a protease), which was assayed against casein, using an ultraviolet spectrophotometer-based methodology. Materials and Methods: PI extracted from a few plants and microbial samples were screened for their PI activity against trypsin. The PI from the most promising source in our study, Tinospora cordifolia (Willd.) Hook. f. and Thoms. stem, was partially purified using ammonium sulfate precipitation followed by dialysis. The PI activity of the partially purified inhibitor was analyzed against chymotrypsin and collagenase enzymes, and the cytotoxic effect of the PI was checked on HepG2 (liver carcinoma) cells by MTT- [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide]- assay. Liquid Chromatograography Mass Spectrometry -based proteomic studies were performed on HepG2 cells to understand the signaling pathways affected by the PIs in the liver cancer cell line. Results: Among the samples tested the PIs from T. cordifolia stem extract had the highest inhibitory activity (72.0%) against trypsin along with cytotoxicity to HepG2 cells. After partial purification by 80.0% ammonium sulfate precipitation, PI had increased inhibitory activity (83.0%) against trypsin and enhanced cytotoxicity (47.0%) to HepG2 cells. Proteomic analysis of the PI-treated HepG2 cells revealed that BAG2 and FAT10 signaling pathways were affected, which may have caused the inhibition of cancer cell proliferation. Conclusion: PI from T. cordifolia stem has promising anticancer potential and hence can be used for further purification and characterization studies toward cancer drug development.

2.
Front Microbiol ; 15: 1392018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006755

RESUMO

Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.

3.
Water Sci Technol ; 90(1): 287-302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007320

RESUMO

Extracellular polymeric substances (EPS) are a critical influencing factor in sludge dewatering. Disrupting such EPS contributes to the release of bound water in sludge, enhancing the sludge dewatering performance. In This study, quaternized straw fibers that are destructive to the EPS structure and components in active sludge were prepared useing heterogeneous free radical graft polymerization. Straw fibers, dimethyl diallyl ammonium chloride (DMDAAC), ammonium persulfate (APS), and acrylamide (AM) were taken as the substrate, grafting monomer, catalyst, and cross-linking agent, respectively.The optimal processing conditions determined for the DMDAAC-based quaternization and graft modification of straw fibers were as follows: reaction temperature of 60 °C, reaction time of 5 h, 0.100 g of catalyst APS dosage per gram of straw, and 3.000 ml of DMDAAC dosage per gram of straw. The optimal processing conditions yielded 1.335 g of modified straw fibers per gram of straw, 33.67% grafting rate, and 31.70% substitution of the quaternary ammonium groups. The capillary suction time (CST) was conditioned from 243.3 ± 22.6 s in the original sludge to 134.5 ± 34.45 s. The specific resistance to filtration (SRF) was reduced from 8.82 ± 0.51 × 1012 m/kg in the original sludge to 4.59 ± 0.23 × 1012 m/kg.


Assuntos
Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio Quaternário/química , Compostos Alílicos/química
4.
Macromol Rapid Commun ; : e2400300, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38950172

RESUMO

Antibacterial materials with high hydrophobicity have drawbacks such as protein adsorption, bacterial contamination, and biofilm formation, which are responsible for some serious adverse health events. Therefore, antibacterial materials with high hydrophilicity are highly desired. In this paper, UV-curable antibacterial materials are prepared from silicone-containing Choline chloride (ChCl) functionalized hyperbranched quaternary ammonium salts (QAS) and tri-hydroxylethyl acrylate phosphate (TAEP). The materials show high hydrophilic performance because their water contact angle is as low as 19.3°. The materials also exhibit quite high antibacterial efficiency against S. aureus over 95.6%, fairly high transmittance over 90%, and good mechanical performance with tensile strength as high as 6.5 MPa. It reveals that it is a feasible strategy to develop antibacterial materials with low hydrophobicity from silicone-modified ChCl-functionalized hyperbranched QAS.

5.
Water Environ Res ; 96(7): e11075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982895

RESUMO

Partial nitritation (PN) is a novel treatment for nitrogen removal using aerobic ammonium oxidation with reduced oxygen requirements compared to conventional nitrification. This study evaluated the performance of the PN process and the factors influencing nitrogen removal from landfill leachate. During the reactivation of biomass, the results showed 70% ammonium removal, but only 20% total nitrogen removal. Further analysis showed that low nitrite accumulation and high nitrate production promoted the growth of nitrite-oxidizing bacteria (NOB). The ammonium removal activity after soaking the cultivated biomass in synthetic water and leachate was measured to be 0.57, 0.1, 0.17, and 0.25 g N•g VSS-1•d-1 for synthetic wastewater and leachate soaking for synthetic wastewater, 12 h, 3 days, and 7 days, respectively. The study found abundant ammonium-oxidizing bacteria (AOB) and NOBs in biomass soaked in synthetic wastewater. However, soaking in leachate promoted AOB growth and inhibited NOB growth making leachate suitable for PN. PRACTITIONER POINTS: The study found that with a longer leachate-soaking period for biomass, ammonium removal activity increases, which in turn increases ammonium conversions during the PN process. Ammonium-oxidizing bacteria (AOB) can acclimate to landfill leachate substrate and grow with a longer soaking period. Nitrite-oxidizing bacteria (NOB) were inhibited by landfill leachate substrate, which is beneficial for nitrite accumulation. Anabolized DO can convert nitrite to nitrate rapidly, which results in higher nitrate accumulation compared to nitrite accumulation. Hence, the DO level has to be sufficiently low to prevent nitrite oxidation and nitrate accumulation.


Assuntos
Compostos de Amônio , Reatores Biológicos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Compostos de Amônio/metabolismo , Compostos de Amônio/química , Bactérias/metabolismo , Nitrificação , Eliminação de Resíduos Líquidos/métodos , Nitritos/metabolismo , Nitritos/química
6.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998239

RESUMO

This paper presents an evaluation of the morphology of fertilizer-grade and prill-grade ammonium nitrate(V). All samples were analyzed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and tomography techniques. The XRD results revealed that despite various provenances, all samples exhibited similar Pmmm symmetry and diffraction patterns. SEM images indicated that prill ammonium nitrate(V) showed a more complex external and internal crystal structure than fertilizer-grade counterparts. Furthermore, tomography analysis revealed that each prill ammonium nitrate(V) sample demonstrated distinct porosity characteristics, including varying pore sizes and distribution patterns. Both methods confirmed that fertilizer-grade ammonium nitrate(V) in the cross-section had a pumice structure, and porous prill ammonium nitrate(V) had a rather complex structure, with a central cavity observed only in the case of Sample 4. The appearance of a central cavity can be explained by the different conditions or manufacturing processes of porous prill ammonium nitrate(V). Moreover, the fertilizer-type ammonium nitrate(V) exhibited the lowest surface-to-volume ratio of ca. 21% compared to the porous-type ammonium nitrate(V). This, together with the lowest surface area of ca. 116 mm2, confirmed the lowest absorption capacity of the fertilizer-grade ammonium nitrate(V) disclosed by the ammonium nitrate(V) producer.

7.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998981

RESUMO

Monitoring of ammonium ion levels in water is essential due to its significant impact on environmental and human health. This work aims to fabricate and characterize sensitive, real-time, low-cost, and portable amperometric sensors for low NH4+ concentrations in water. Two strategies were conducted by cyclic voltammetry (CV): electrodeposition of Au nanoparticles on a commercial polyaniline/C electrode (Au/PANI/C), and CV of electropolymerized polyaniline on a commercial carbon electrode (Au/PANIep/C). Au NPs increase the electrical conductivity of PANI and its ability to transfer charges during electrochemical reactions. The electrode performances were tested in a concentration range from 0.35 µM to 7 µM in NH4+ solution. The results show that the Au/PANI/C electrode performs well for high NH4+ concentrations (0.34 µM LoD) and worsens for low NH4+ concentrations (0.01 µM LoD). A reverse performance occurs for the electrode Au/PANIep/C, with a 0.03 µM LoD at low NH4+ concentration and 0.07 µM LoD at high NH4+ concentration. The electrodes exhibit a good reproducibility, with a maximum RSD of 3.68% for Au/PANI/C and 5.94% for Au/PANIep/C. In addition, the results of the repeatability tests show that the electrochemical reaction of sensing is fully reversible, leaving the electrode ready for a new detection event.

8.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998982

RESUMO

In this research, the authors studied the synthesis of a silicon-based quaternary ammonium material based on the coupling agent chloromethyl trimethoxysilane (KH-150) as well as its adsorption and separation properties for Th(IV). Using FTIR and NMR methods, the silicon-based materials before and after grafting were characterized to determine the spatial structure of functional groups in the silicon-based quaternary ammonium material SG-CTSQ. Based on this, the functional group grafting amount (0.537 mmol·g-1) and quaternization rate (83.6%) of the material were accurately calculated using TGA weight loss and XPS. In the adsorption experiment, the four materials with different grafting amounts showed different degrees of variation in their adsorption of Th(IV) with changes in HNO3 concentration and NO3- concentration but all exhibited a tendency toward anion exchange. The thermodynamic and kinetic experimental results demonstrated that materials with low grafting amounts (SG-CTSQ1 and SG-CTSQ2) tended to physical adsorption of Th(IV), while the other two tended toward chemical adsorption. The adsorption mechanism experiment further proved that the functional groups achieve the adsorption of Th(IV) through an anion-exchange reaction. Chromatographic column separation experiments showed that SG-CTSQ has a good performance in U-Th separation, with a decontamination factor for uranium in Th(IV) of up to 385.1, and a uranium removal rate that can reach 99.75%.

9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000264

RESUMO

Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae) and four multidrug-resistant pathogens. The proposed FCM protocol measures changes in scattered light and counts following disinfectant exposure, neutralization, and culture steps. Unlike other available FCM-based methods, this approach does not rely on autofluorescence measurements, impedance cytometry, or fluorescent dyes. The FCM scattered light signals revealed both decreased count rates and morphological changes after treatment with minimum inhibitory concentrations (MICs) and higher concentrations for all tested bacteria. The results from the FCM measurements showed excellent correlation with those from standard assays, providing a rapid tool for monitoring the susceptibility profile of clinical, multidrug-resistant pathogens to chemical disinfectants, which could support infection prevention and control procedures for healthcare environments. This label-free FCM protocol offers a novel and rapid tool for environmental health experts, aiding in the optimization of disinfectant selection for the prevention and control of HAIs.


Assuntos
Desinfetantes , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Desinfetantes/farmacologia , Citometria de Fluxo/métodos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
10.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000500

RESUMO

The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl- and HCO3-). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl-] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs.


Assuntos
Compostos de Amônio , Cloretos , Eritrócitos , Humanos , Eritrócitos/metabolismo , Compostos de Amônio/metabolismo , Cloretos/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Transporte Biológico , Proteínas Sanguíneas , Glicoproteínas de Membrana
11.
Sci Total Environ ; : 174761, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004356

RESUMO

Constructed wetlands (CWs) have emerged as effective wastewater treatment systems, mimicked natural wetland processes but engineered for enhanced pollutant removal efficiency. Ammonium (NH4+) and nitrate (NO3-) are among common pollutants in wastewater, posing significant environmental and health risks. The primary objective of this study is to compares the performance of CWs using gravel and three sizes of natural pumice, along with phragmites australis, in horizontal and horizontal-vertical CWs for nitrate and ammonium removal in the complementary treatment of domestic wastewater. Additionally, the study aims to develop and validate a numerical model using MATLAB software to predict the removal efficiency of these pollutants, thereby contributing to the optimization of CW design and operation. The model operates as a zero-dimensional model based on the law of mass conservation, treating the wetland as a completely mixed reactor, thus avoiding complexities associated with solute movement in porous media. It accurately could predict removal efficiency of chemical, biochemical, and biological indicators while considering active and passive absorption mechanisms by plant uptake. Notably, the determination of coefficients in the model equation does not rely on potentially error-prone laboratory measurements due to sampling issues. Instead, optimization techniques alongside field data robustly estimate these coefficients, ensuring reliability and practicality. Results indicate that higher pollutant concentrations increase reaction rates, particularly enhancing CW efficiency in ammonium removal. Pumice, especially in larger sizes, exhibits superior absorption due to increased porosity and surface area. Overall, the model accurately predicts nitrates concentrations, demonstrating its potential for CW performance optimization and confirming the significance of effective pollutant removal strategies in wastewater treatment.

12.
Sci Total Environ ; 946: 174458, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964404

RESUMO

Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.

13.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978457

RESUMO

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Assuntos
Florestas , Isótopos de Nitrogênio , Nitrogênio , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Isótopos de Nitrogênio/análise , Atmosfera/química , Sequestro de Carbono , Árvores/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química
14.
Environ Res ; 259: 119503, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972342

RESUMO

Microbial fuel cells (MFCs) show promise in sewage treatment because they can directly convert organic matter (OM) into electricity. This study aimed to demonstrate MFCs stability over 750 days of operation and efficient removal of OM and nitrogenous compounds from sewage. To enhance contaminant removal, oxygen was provided into the anode chamber via a mini air pump. This pump was powered by the MFCs' output voltage, which was boosted using a DC-DC converter. The experimental system consisted of 12 sets of cylindrical MFCs within a 246L-scale reactor. The boosted voltage reached 4.7 V. This voltage was first collected in capacitors every 5 min and then dispensed intermittently to the air pump for the MFCs reactor in 4 s. This corresponds to receiving average DO concentration reaching 0.34 ± 0.44 mg/L at 10 cm above the air-stone. Consequently, the degradation rate constants (k) for chemical oxygen demand (COD) and biological oxygen demand (BOD) in the presence of oxygen were 0.048 and 0.069, respectively, which surpassed those without oxygen by 0.039 and 0.044, respectively. Aeration also marginally improved the removal of ammonia because of its potential to create a favorable environment for the growth of anammox and ammonia-oxidizing bacteria such as Candidatus brocadia and Nitrospira. The findings of this study offer in-depth insight into the benefits of boosted voltage in MFCs, highlighting its potential to enhance contaminant degradation. This serves as a foundation for future research focused on improving MFCs performance, particularly for the removal of contaminants from wastewater.

15.
Beilstein J Org Chem ; 20: 1510-1517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978746

RESUMO

We herein report the oxidative α-azidation of carbonyl compounds by using NaN3 in the presence of dibenzoyl peroxide catalyzed by tetrabutylammonium iodide (TBAI). By utilizing these readily available bulk chemicals a variety of cyclic ß-ketocarbonyl derivatives can be efficiently α-azidated under operationally simple conditions. Control experiments support a mechanistic scenario involving in situ formation of an ammonium hypoiodite species which first facilitates the α-iodination of the pronucleophile, followed by a phase-transfer-catalyzed nucleophilic substitution by the azide. Furthermore, we also show that an analogous α-nitration by using NaNO2 under otherwise identical conditions is possible as well.

16.
Beilstein J Org Chem ; 20: 1504-1509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978748

RESUMO

We herein report the asymmetric organocatalytic addition of azlactones to allenoates. Upon using chiral quaternary ammonium salt catalysts, i.e., Maruoka's binaphthyl-based spirocyclic ammonium salts, the addition of various azlactones to allenoates proceeds in a ß-selective manner with moderate levels of enantioselectivities (up to 83:17 er). Furthermore, the obtained products can be successfully engaged in nucleophilic ring opening reactions, thus giving highly functionalized α-amino acid derivatives.

17.
Bioresour Technol ; 406: 131070, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971392

RESUMO

In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.

18.
Biol Reprod ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959857

RESUMO

Quaternary ammonium compounds (QACs) are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, QACs have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. QACs are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of QACs in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday QAC exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of QACs on reproduction are largely limited to high-dose studies, which may not be predictive of low dose, daily exposure, especially as QACs may be endocrine disrupting chemicals. This review analyzes recent studies on QAC effects on reproductive health, identifying knowledge gaps, and recommending future directions in QAC-related research.

19.
Bioresour Technol ; : 131083, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972430

RESUMO

Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ±â€¯0.98 mg/L and 42.51 ±â€¯2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.

20.
Small ; : e2402236, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970543

RESUMO

A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA