Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 46(1): e2300152, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888800

RESUMO

Mechanisms occurring at the atomic level are now known to drive processes essential for life, as revealed by quantum effects on biochemical reactions. Some macroscopic characteristics of organisms may thus show an atomic imprint, which may be transferred across organisms and affect their evolution. This possibility is considered here for the first time, with the aim of elucidating the appearance of an animal innovation with an unclear evolutionary origin: migratory behaviour. This trait may be mediated by a radical pair (RP) mechanism in the retinal flavoprotein cryptochrome, providing essential magnetic orientation for migration. Isotopes may affect the performance of quantum processes through their nuclear spin. Here, we consider a simple model and then apply the standard open quantum system approach to the spin dynamics of cryptochrome RP. We changed the spin quantum number (I) and g-factor of hydrogen and nitrogen isotopes to investigate their effect on RP's yield and magnetic sensitivity. Strong differences arose between isotopes with I = 1 and I = 1/2 in their contribution to cryptochrome magnetic sensitivity, particularly regarding Earth's magnetic field strengths (25-65 µT). In most cases, isotopic substitution improved RP's magnetic sensitivity. Migratory behaviour may thus have been favoured in animals with certain isotopic compositions of cryptochrome.


Assuntos
Migração Animal , Criptocromos , Animais , Criptocromos/química , Campos Magnéticos , Aves , Isótopos , Biologia
2.
J Anim Ecol ; 93(3): 294-306, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37970639

RESUMO

In temperate regions, the annual pattern of spring onset can be envisioned as a 'green wave' of emerging vegetation that moves across continents from low to high latitudes, signifying increasing food availability for consumers. Many herbivorous migrants 'surf' such resource waves, timing their movements to exploit peak vegetation resources in early spring. Although less well studied at the individual level, secondary consumers such as insectivorous songbirds can track vegetation phenology during migration as well. We hypothesized that four species of ground-foraging songbirds in eastern North America-two warblers and two thrushes-time their spring migrations to coincide with later phases of vegetation phenology, corresponding to increased arthropod prey, and predicted they would match their migration rate to the green wave but trail behind it rather than surfing its leading edge. We further hypothesized that the rate at which spring onset progresses across the continent influences bird migration rates, such that individuals adjust migration timing within North America to phenological conditions they experience en route. To test our hypotheses, we used a continent-wide automated radio telemetry network to track individual songbirds on spring migration between the U.S. Gulf Coast region and northern locations closer to their breeding grounds. We measured vegetation phenology using two metrics of spring onset, the spring index first leaf date and the normalized difference vegetation index (NDVI), then calculated the rate and timing of spring onset relative to bird detections. All individuals arrived in the southeastern United States well after local spring onset. Counter to our expectations, we found that songbirds exhibited a 'catching up' pattern: Individuals migrated faster than the green wave of spring onset, effectively closing in on the start of spring as they approached breeding areas. While surfing of resource waves is a well-documented migration strategy for herbivorous waterfowl and ungulates, individual songbirds in our study migrated faster than the green wave and increasingly caught up to its leading edge en route. Consequently, songbirds experience a range of vegetation phenophases while migrating through North America, suggesting flexibility in their capacity to exploit variable resources in spring.


En las regiones templadas, el patrón anual de inicio de la primavera puede concebirse como una "ola verde" de vegetación emergente que se desplaza por los continentes desde las latitudes bajas a las altas, lo que significa una mayor disponibilidad de alimento para los consumidores. Muchos herbívoros migratorios "surfean" estas olas de recursos, programando sus movimientos para aprovechar los picos de vegetación a principios de primavera. Aunque menos estudiados a nivel de individuo, los consumidores secundarios, como las aves terrestres insectívoras, también pueden seguir la fenología de la vegetación durante la migración. Hipotetizamos es que cuatro especies de aves terrestres que se alimentan en el suelo en el este de Norteamérica - dos reinitas y dos zorzales - programan sus migraciones primaverales para que coincidan con las fases más tardías de la fenología de la vegetación, que se corresponden con un aumento de artrópodos, y predijimos que sincronizarian su ritmo de migración con la ola verde, pero que irían detrás de ella en lugar de surfear su borde delantero. También hipotetizamos que el ritmo al que avanza la primavera en el continente influye en las tasas de migración de las aves, de modo que los individuos ajustan la fecha de migración dentro de Norteamérica a las condiciones fenológicas que experimentan en ruta. Para comprobar nuestras hipótesis, utilizamos una red automatizada de radiotelemetría a escala continental para seguir individuos en su migración primaveral entre la región de la costa del Golfo de EEUU y las localidades septentrionales más cercanas a sus zonas de cría. Medimos la fenología de la vegetación utilizando dos métricas del inicio de la primavera, el índice de la fecha de la primera hoja primaveral y el índice de vegetación de diferencia normalizada (NDVI), luego calculamos la tasa y el tiempo de la aparaciòn de la primavera relativo a las detecciones de aves. Todos los individuos llegaron al sureste de EEUU bastante después del inicio de la primavera local. Contrario a nuestras expectativas, descubrimos que las aves terrestres mostraron un patrón de Carrera para "ponerse al día": los individuos migraron frente a la ola verde del inicio de la primavera, acercándose efectivamente al inicio de la primavera a medida que llegaban a las zonas de cría. Mientras que el surfing de las olas de recursos es una estrategia migratoria bien documentada para las aves acuáticas herbívoras y los ungulados, los individuos de aves terrestres de nuestro estudio migraron más rápido que la ola verde y alcanzaron cada vez más el borde delantero en ruta. En consecuencia, las aves terrestres experimentan una serie de fases fenológicas de la vegetación mientras migran a través de Norteamérica, lo que sugiere flexibilidad en su capacidad para explotar recursos variables en primavera.


Assuntos
Aves Canoras , Humanos , Animais , Migração Animal , Melhoramento Vegetal , América do Norte , Estações do Ano
3.
Biol Lett ; 19(11): 20230181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38016643

RESUMO

The Earth's magnetic field is used as a navigational cue by many animals. For mammals, however, there are few data to show that navigation ability relies on sensing the natural magnetic field. In night-time migrating bats, experiments demonstrating a role for the solar azimuth at sunset in the calibration of the orientation system suggest that the magnetic field is a candidate for their compass. Here, we investigated how an altered magnetic field at sunset changes the nocturnal orientation of the bat Pipistrellus pygmaeus. We exposed bats to either the natural magnetic field, a horizontally shifted field (120°), or the same shifted field combined with a reversal of the natural value of inclination (70° to -70°). We later released the bats and found that the take-off orientation differed among all treatments. Bats that were exposed to the 120° shift were unimodally oriented northwards in contrast to controls which exhibited a bimodal north-south distribution. Surprisingly, the orientation of bats exposed to both a 120° shift and reverse inclination was indistinguishable from a uniform distribution. These results suggest that these migratory bats calibrate the magnetic field at sunset, and for the first time, they show that bats are sensitive to the angle of magnetic inclination.


Assuntos
Quirópteros , Animais , Orientação , Calibragem , Luz Solar , Mamíferos , Campos Magnéticos , Migração Animal
4.
Mov Ecol ; 11(1): 37, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408064

RESUMO

BACKGROUND: For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS: To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS: Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS: Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.

5.
Ecol Evol ; 12(10): e9383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36267687

RESUMO

Animal migration is a key process underlying active subsidies and species dispersal over long distances, which affects the connectivity and functioning of ecosystems. Despite much research describing patterns of where animals migrate, we still lack a framework for quantifying and predicting how animal migration affects ecosystem processes. In this study, we aim to integrate animal movement behavior and ecosystem functioning by developing a predictive modeling framework that can inform ecosystem management and conservation.We propose a framework to model individual-level migration trajectories between populations' seasonal ranges as well as the resulting dispersal and fate of propagules carried by the migratory animals, which can be calibrated using empirical data at every step of the modeling process. As a case study, we applied our framework to model the spread of guava seeds, Psidium guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and nutrients across the island, while Guava is one of the most problematic invasive species in the Galapagos archipelago.Our model can predict the pattern of spread of guava seeds alongside tortoises' downslope migration range, and it identified areas most likely to see establishment success. Our results show that Galapagos tortoises' seed dispersal may particularly contribute to guava range expansion on Santa Cruz Island, due to both long gut retention time and tortoise's long-distance migration across vegetation zones. In particular, we predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos National Park, which has important consequences for the native flora.The flexibility and modularity of our framework allow for the integration of multiple data sources. It also allows for a wide range of applications to investigate how migratory animals affect ecosystem processes, including propagule dispersal but also other processes such as nutrient transport across ecosystems. Our framework is also a valuable tool for predicting how animal-mediated propagule dispersal can be affected by environmental change. These different applications can have important conservation implications for the management of ecosystems that include migratory animals.

6.
J Anim Ecol ; 91(10): 1961-1974, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962601

RESUMO

Animal migrations represent the regular movements of trillions of individuals. The scale of these movements has inspired human intrigue for millennia and has been intensively studied by biologists. This research has highlighted the diversity of migratory strategies seen across and within migratory taxa: while some migrants temporarily express phenotypes dedicated to travel, others show little or no phenotypic flexibility in association with migration. However, a vocabulary for describing these contrasting solutions to the performance trade-offs inherent to the highly dynamic lifestyle of migrants (and strategies intermediate between these two extremes) is currently missing. We propose a taxon-independent organising framework based on energetics, distinguishing between migrants that forage as they travel (income migrants) and those that fuel migration using energy acquired before departure (capital migrants). Not only does our capital:income continuum of migratory energetics account for the variable extent of phenotypic flexibility within and across migrant populations, but it also aligns with theoreticians' treatment of migration and clarifies how migration impacts other phases of the life cycle. As such, it provides a unifying scale and common vacabulary for comparing the migratory strategies of divergent taxa.


Assuntos
Migração Animal , Animais , Humanos , Estações do Ano
7.
J Anim Ecol ; 91(4): 780-793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174493

RESUMO

Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.


Assuntos
Borboletas , Parasitos , Migração Animal , Animais , Borboletas/parasitologia , México , Melhoramento Vegetal , Estações do Ano , Estados Unidos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34997291

RESUMO

Spontaneous magnetic alignment is the simplest known directional response to the geomagnetic field that animals perform. Magnetic alignment is not a goal directed response and its relevance in the context of orientation and navigation has received little attention. Migratory songbirds, long-standing model organisms for studying magnetosensation, have recently been reported to align their body with the geomagnetic field. To explore whether the magnetic alignment behaviour in songbirds is involved in the underlying mechanism for compass calibration, which have been suggested to occur near to sunset, we studied juvenile Eurasian reed warblers (Acrocephalus scirpaceus) captured at stopover during their first autumn migration. We kept one group of birds in local daylight conditions and an experimental group under a 2 h delayed sunset. We used an ad hoc machine learning algorithm to track the birds' body alignment over a 2-week period. Our results show that magnetic body alignment occurs prior to sunset, but shifts to a more northeast-southwest alignment afterwards. Our findings support the hypothesis that body alignment could be associated with how directional celestial and magnetic cues are integrated in the compass of migratory birds.


Assuntos
Aves Canoras , Migração Animal , Animais , Fenômenos Magnéticos , Magnetismo , Orientação/fisiologia , Aves Canoras/fisiologia
9.
Arab J Sci Eng ; 47(8): 9557-9581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34777937

RESUMO

The most important and demanding part of the artificial neural network is the training process which involves finding the most suitable values for the weights in the network architecture, a challenging optimization problem. Gradient approaches and the meta-heuristic approaches are two methods extensively used to optimize the weights in the network. Gradient approaches have serious disadvantages including getting stuck in local optima, inadequate exploration, etc. To overcome these disadvantages, meta-heuristic approaches are preferred in training the artificial neural network instead of gradient methods. Therefore, in this study, an improved animal migration optimization algorithm with the Lévy flight feature was proposed to train the multilayer perceptron. The proposed hybrid algorithm is named IAMO-MLP. The main contributions of this article are that the IAMO algorithm was developed, the IAMO-MLP algorithm can successfully escape from local optima, and the initial positions did not affect the performance of the IAMO-MLP algorithm. The enhanced algorithm was tested and validated against a wider set of benchmark functions and indicated that it substantially outperformed the original implementation. Afterward, the IAMO-MLP was compared with ten algorithms on five classification problems (xor, balloon, iris, breast cancer, and heart) and one real-world problem in terms of mean squared error, classification accuracy, and nonparametric statistical Friedman test. According to the results, the IAMO was successful in training the multilayer perceptron.

10.
Mov Ecol ; 9(1): 31, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116722

RESUMO

BACKGROUND: Migratory animals use information from the Earth's magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. METHODS: We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency's Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. RESULTS: We find that the average absolute error of intensity is - 21.6 nT (95% CI [- 22.26555, - 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. CONCLUSIONS: By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.

11.
Front Behav Neurosci ; 14: 600737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343312

RESUMO

The awe-inspiring annual migration of monarch butterflies (Danaus plexippus) is an iconic example of long-distance migratory phenomena in which environmental sensory cues help drive successful migration. In this mini-review article, I begin by describing how studies on monarch migration can provide us with generalizable information on how sensory cues can mediate key aspects of animal movement. I describe how environmental sensory cues can trigger the development and progression of the monarch migration, as well as inform sensory-based movement mechanisms in order to travel to and reach their goal destination, despite monarchs being on their maiden voyage. I also describe how sensory cues can trigger season-appropriate changes in migratory direction during the annual cycle. I conclude this mini-review article by discussing how contemporary environmental challenges threaten the persistence of the monarch migration. Environmental challenges such as climate change and shifting land use can significantly alter the sensory environments that monarchs migrate through, as well as degrade or eliminate the sources of sensory cues that are necessary for successful migration.

12.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190354, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862818

RESUMO

Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl). Hybrid systems models can accommodate multiple equilibria, which is a basic requirement for modelling food webs whose topology changes with season. We demonstrate that our model can generate multi-annual cycling in lemming dynamics, solely from a combined effect of seasonality and state-dependent behaviour. We compare our multi-season model to a static model of the predator-prey community dynamics and study the interactions between species. Interestingly, including seasonality reveals indirect interactions between migrants and residents not captured by the static model. Further, we find that the direction and magnitude of interactions between two species are not necessarily accurate using only summer time-series. Our study demonstrates the need for the development of multi-season models and provides the tools to analyse them. Integrating seasonality in food web modelling is a vital step to improve predictions about the impacts of climate change on ecosystem functioning. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Migração Animal , Cadeia Alimentar , Modelos Biológicos , Tundra , Animais , Regiões Árticas , Arvicolinae , Biomassa , Raposas , Gansos , Aquecimento Global , Nunavut , Estações do Ano , Estrigiformes
13.
Proc Biol Sci ; 287(1935): 20201799, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32962549

RESUMO

Seasonal animal migration is a widespread phenomenon. At the species level, it has been shown that many migratory animal species track similar climatic conditions throughout the year. However, it remains unclear whether such a niche tracking pattern is a direct consequence of individual behaviour or emerges at the population or species level through behavioural variability. Here, we estimated seasonal niche overlap and seasonal niche tracking at the individual and population level of central European white storks (Ciconia ciconia). We quantified niche tracking for both weather and climate conditions to control for the different spatio-temporal scales over which ecological processes may operate. Our results indicate that niche tracking is a bottom-up process. Individuals mainly track weather conditions while climatic niche tracking mainly emerges at the population level. This result may be partially explained by a high degree of intra- and inter-individual variation in niche overlap between seasons. Understanding how migratory individuals, populations and species respond to seasonal environments is key for anticipating the impacts of global environmental changes.


Assuntos
Migração Animal , Aves , Clima , Animais , Mudança Climática , Ecossistema
14.
Proc Biol Sci ; 287(1935): 20201829, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933442

RESUMO

Annual migration is common across animal taxa and can dramatically shape the spatial and temporal patterns of infectious disease. Although migration can decrease infection prevalence in some contexts, these energetically costly long-distance movements can also have immunosuppressive effects that may interact with transmission processes in complex ways. Here, we develop a mechanistic model for the reactivation of latent infections driven by physiological changes or energetic costs associated with migration (i.e. 'migratory relapse') and its effects on disease dynamics. We determine conditions under which migratory relapse can amplify or reduce infection prevalence across pathogen and host traits (e.g. infectious periods, virulence, overwinter survival, timing of relapse) and transmission phenologies. We show that relapse at either the start or end of migration can dramatically increase prevalence across the annual cycle and may be crucial for maintaining pathogens with low transmissibility and short infectious periods in migratory populations. Conversely, relapse at the start of migration can reduce the prevalence of highly virulent pathogens by amplifying culling of infected hosts during costly migration, especially for highly transmissible pathogens and those transmitted during migration or the breeding season. Our study provides a mechanistic foundation for understanding the spatio-temporal patterns of relapsing infections in migratory hosts, with implications for zoonotic surveillance and understanding how infection patterns will respond to shifts in migratory propensity associated with environmental change. Further, our work suggests incorporating within-host processes into population-level models of pathogen transmission may be crucial for reconciling the range of migration-infection relationships observed across migratory species.


Assuntos
Migração Animal/fisiologia , Doenças Transmissíveis/epidemiologia , Animais , Dinâmica Populacional , Prevalência
15.
Commun Biol ; 2: 366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602415

RESUMO

The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.


Assuntos
Anguilla , Migração Animal , Estuários , Campos Magnéticos , Anguilla/fisiologia , Migração Animal/fisiologia , Animais , Hidrodinâmica , Memória , Noruega , Orientação/fisiologia , Navegação Espacial/fisiologia
16.
Curr Biol ; 29(8): 1369-1373.e3, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30955934

RESUMO

From bats to whales, millions of mammals migrate every year. However, their navigation capacity for accomplishing long-distance movements remains remarkably understudied and lags behind by five decades compared to other animals [1, 2]-partly because, unlike for other taxa, such as birds and sea turtles, no small-scale orientation assay has so far been developed. Yet recently, bats became a model to investigate which cues mammals use for long-range navigation, and, surprisingly for nocturnal animals, sunset cues, and particularly polarized-light cues, appear to be crucial for calibration of the magnetic-compass system in non-migratory bats [3-5]. This does not appear to hold for a species of migratory bat, however [6], and thus the nature of the information used by migratory bats for navigation remains unclear. Here, we asked whether the position of the solar disk per se is relevant for compass orientation in a migratory bat, Pipistrellus pygmaeus. Using a new experimental assay that measures takeoff orientation, we tested the orientation of bats exposed to a shifted sunset azimuth using a mirror at dusk. Bats exposed to a 180°-rotated azimuth of the setting sun and released after translocation during the same night shifted their heading direction by ∼180° compared to control bats. However, first-year migrants had no clear orientation either as controls or after the same treatment. This suggests that learning the migratory direction is a key component in the navigational system of naive bats in this species. Our study provides rare evidence for the specific cues and mechanisms that migratory mammals use for navigation.


Assuntos
Migração Animal , Quirópteros/fisiologia , Orientação Espacial , Navegação Espacial , Luz Solar , Animais , Sinais (Psicologia) , Feminino , Letônia , Masculino
17.
Curr Biol ; 28(17): 2824-2830.e3, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146151

RESUMO

Thousands of species migrate [1]. Though we have some understanding of where and when they travel, we still have very little insight into who migrates with whom and for how long. Group formation is pivotal in allowing individuals to interact, transfer information, and adapt to changing conditions [2]. Yet it is remarkably difficult to infer group membership in migrating animals without being able to directly observe them. Here, we use novel lightweight atmospheric pressure loggers to monitor group dynamics in a small migratory bird, the European bee-eater (Merops apiaster). We present the first evidence of a migratory bird flying together with non-kin of different ages and sexes at all stages of the life cycle. In fact, 49% stay together throughout the annual cycle, never separating longer than 5 days at a time despite the ∼14,000-km journey. Of those that separated for longer, 89% reunited within less than a month with individuals they had previously spent time with, having flown up to 5,000 km apart. These birds were not only using the same non-breeding sites, but also displayed coordinated foraging behaviors-these are unlikely to result from chance encounters in response to the same environmental conditions alone. Better understanding of migratory group dynamics, using the presented methods, could help improve our understanding of collective decision making during large-scale movements.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , África , Animais , Europa (Continente) , Monitorização Fisiológica , Fatores de Tempo
18.
J Biol Dyn ; 12(1): 632-662, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051763

RESUMO

The swarming of a bee colony is guided by a small group of scout individuals, which are informed of the target destination (the new nest). However, little is known on the underlying mechanisms, i.e. on how the information is passed within the population. In this respect, we here present a discrete mathematical model to investigate these aspects. In particular, each bee, represented by a material point, is assigned its status within the colony and set to move according to individual strategies and social interactions. More specifically, we propose alternative assumptions on the flight synchronization mechanism of uninformed individuals and on the characteristic dynamics of the scout insects. Numerical realizations then point out the combinations of behavioural hypotheses resulting in collective productive movement. An analysis of the role of the scout bee percentage and of the phenomenology of the swarm in domains with structural elements is finally performed.


Assuntos
Comportamento Cooperativo , Voo Animal/fisiologia , Modelos Biológicos , Comportamento de Nidação , Animais , Simulação por Computador , Meio Ambiente , Análise Numérica Assistida por Computador , Dinâmica Populacional
19.
Glob Chang Biol ; 24(7): 2752-2754, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656590

RESUMO

Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions through animal migration and are an overlooked part of the transferred environmental burden caused by a growing thirst for milk in China and elsewhere.


Assuntos
Biodiversidade , Indústria de Laticínios , Leite , Distribuição Animal , Ração Animal , Animais , China , Produtos Agrícolas , Europa (Continente) , Feminino , Medicago sativa , Ratos , Controle de Roedores
20.
Adv Virus Res ; 100: 279-307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551140

RESUMO

Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.


Assuntos
Aves/virologia , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Migração Animal , Animais , Surtos de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Vetores de Doenças , Doenças Endêmicas/estatística & dados numéricos , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA