Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2408634, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148167

RESUMO

Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.

2.
Small ; : e2405080, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073300

RESUMO

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

3.
Small ; : e2401592, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805745

RESUMO

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

4.
Small Methods ; : e2400284, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651527

RESUMO

Perovskite materials that aren't stable during the oxygen evolution reaction (OER) are unsuitable for anion-exchange membrane water electrolyzers (AEMWE). But through manipulating their electronic structures, their performance can further increase. Among the first-row transition metals, nickel and iron are widely recognized as prominent electrocatalysts; thus, the researchers are looking into how combining them can improve the OER. Recent research has actively explored the design and study of heterostructures in this field, showcasing the dynamic exploration of innovative catalyst configurations. In this study, a heterostructure is used to manipulate the electronic structure of LaNiO3 (LNO) to improve both OER properties and durability. Through adsorbing iron onto the LNO (LNO@Fe) as γ iron oxyhydroxide (γ-FeOOH), the binding energy of nickel in the LNO exhibited negative shifts, inferring nickel movement toward the metallic state. Consequently, the electrochemical properties of LNO@Fe are further improved. LNO@Fe showed excellent performance (1.98 A cm-2, 1 m KOH, 50 °C at 1.85 V) with 84.1% cell efficiency in AEMWE single cells, demonstrating great improvement relative to LNO. The degradation for the 850 h durability analysis of LNO@Fe is ≈68 mV kh-1, which is ≈58 times less than that of LNO.

5.
Adv Mater ; 36(27): e2314211, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558476

RESUMO

The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO1.8H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO1.8H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi5+, leading to increased metal-oxygen covalency and that the oxophilic Ce3+/4+ redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO1.8H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm-2. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.

6.
Adv Sci (Weinh) ; 11(19): e2308205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482978

RESUMO

Developing cost-efficient trifunctional catalysts capable of facilitating hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) activity is essential for the progression of energy devices. Engineering these catalysts to optimize their active sites and integrate them into a cohesive system presents a significant challenge. This study introduces a nanoflower (NFs)-like carbon-encapsulated FeNiPt nanoalloy catalyst (FeNiPt@C NFs), synthesized by substituting Co2+ ions with high-spin Fe2+ ions in Hofmann-type metal-organic framework, followed by carbonization and pickling processes. The FeNiPt@C NFs catalyst, characterized by its nitrogen-doped carbon-encapsulated metal alloy structure and phase-segregated FeNiPt alloy with slight surface oxidization, exhibits excellent trifunctional catalytic performance. This is evidenced by its activities in HER (-25 mV at 10 mA cm-2), ORR (half-wave potential of 0.93 V), and OER (294 mV at 10 mA cm-2), with the enhanced water oxidation activity attributed to the high-spin state of the Fe element. Consequently, the Zn-air battery and anion exchange membrane water electrolyzer assembled by FeNiPt@C NFs catalyst demonstrate remarkable power density (168 mW cm-2) and industrial-scale current density (698 mA cm-2 at 1.85 V), respectively. This innovative integration of multifunctional catalytic sites paves the way for the advancement of sustainable energy systems.

7.
Small ; 20(24): e2310737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396324

RESUMO

Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbed SO 4 2 - ${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mA cm ECSA - 2 ${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA