Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Cureus ; 16(6): e61548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962586

RESUMO

INTRODUCTION: The present study aimed to evaluate and compare the anti-inflammatory effects of two oral rinse formulations, a commercial oral rinse and an Ocimum tenuiflorum and Ocimum gratissimum (nanocomposites, NCs) oral rinse, using in vitro assays commonly employed to assess anti-inflammatory activity. MATERIALS AND METHODS: The anti-inflammatory potential of the oral rinse formulations was assessed using bovine serum albumin (BSA) denaturation, egg albumin denaturation, and membrane stabilization assays. Diclofenac sodium was used as a reference standard in all assays. The inhibition percentages of BSA denaturation and egg albumin denaturation assays, as well as membrane stabilization effects, were measured at various concentrations of the oral rinse formulations. RESULTS: Both the commercial oral rinse and the Ocimum tenuiflorum and Ocimum gratissimum oral rinse demonstrated significant inhibition of BSA denaturation, indicating their anti-inflammatory potential. The Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse consistently showed higher inhibition percentages than the commercial oral rinse, suggesting stronger anti-inflammatory effects in this assay. In the egg albumin denaturation assay, both formulations exhibited inhibition of protein denaturation, with the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse showing comparable or slightly higher inhibition percentages. The membrane stabilization assay further supported the anti-inflammatory properties of both formulations, with the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse demonstrating efficacy comparable to diclofenac sodium. DISCUSSION: The results suggest that Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse may possess stronger anti-inflammatory effects compared to commercial oral rinse, as evidenced by higher inhibition percentages in the BSA denaturation assay. Both formulations showed promising anti-inflammatory activity in the egg albumin denaturation and membrane stabilization assays, indicating their potential for mitigating inflammation. CONCLUSION: The Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse exhibits significant anti-inflammatory effects in vitro, potentially surpassing the efficacy of the commercial oral rinse. Further studies are needed to explore the clinical implications of these findings and to validate the anti-inflammatory properties of the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse in vivo.

2.
Nat Prod Res ; : 1-5, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979980

RESUMO

One new previously undescribed trihydroxy fatty ester (1) and three known aliphatic alkenes (2-4) have been isolated from the rhizomes of Trillium govanianum Wall. ex D.Don. The structures of isolated molecules were elucidated using extensive spectroscopic techniques including NMR, HR-ESI-MS, and FT-IR, respectively. This is the first report on the isolation of compounds 3 and 4 from the Trillium genus. Moreover, through a network pharmacology approach, the therapeutic potential of the isolated molecules was investigated. This analysis revealed that these fatty alkenes can be utilised for managing health conditions such as pneumonitis, inflammatory pain, and endothelial dysfunction.

3.
Sci Rep ; 14(1): 10509, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714697

RESUMO

Chronic non-communicable diseases (CNCDs) pose a significant public health challenge. Addressing this issue, there has been a notable breakthrough in the prevention and mitigation of NCDs through the use of antioxidants and anti-inflammatory agents. In this study, we aim to explore the effectiveness of Eupatorium adenophora Spreng leaves (EASL) as an antioxidant and anti-inflammatory agent, and its potential applications. To construct a cellular model of oxidative damage and inflammation, Caco-2 cells were treated with tert-butyl hydroperoxide (t-BHP). The biocompatibility of EASL-AE with Caco-2 cells was assessed using the MTT assay, while compatibility was further verified by measuring LDH release and the protective effect against oxidative damage was also assessed using the MTT assay. Additionally, we measured intracellular oxidative stress indicators such as ROS and 8-OHdG, as well as inflammatory pathway signalling protein NFκB and inflammatory factors TNF-α and IL-1ß using ELISA, to evaluate the antioxidant and anti-inflammatory capacity of EASL-AE. The scavenging capacity of EASL-AE against free radicals was determined through the DPPH Assay and ABTS Assay. Furthermore, we measured the total phenolic, total flavonoid, and total polysaccharide contents using common chemical methods. The chemical composition of EASL-AE was analyzed using the LC-MS/MS technique. Our findings demonstrate that EASL-AE is biocompatible with Caco-2 cells and non-toxic at experimental levels. Moreover, EASL-AE exhibits a significant protective effect on Caco-2 cells subjected to oxidative damage. The antioxidant effect of EASL-AE involves the scavenging of intracellular ROS, while its anti-inflammatory effect is achieved by down-regulation of the NFκB pathway. Which in turn reduces the release of inflammatory factors TNF-α and IL-1ß. Through LC-MS/MS analysis, we identified 222 compounds in EASL-AE, among which gentianic acid, procaine and L-tyrosine were the compounds with high antioxidant capacity and may be the effective constituent for EASL-AE with antioxidant activity. These results suggest that EASL-AE is a natural and high-quality antioxidant and anti-inflammatory biomaterial that warrants further investigation. It holds great potential for applications in healthcare and other related fields.


Assuntos
Anti-Inflamatórios , Antioxidantes , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , terc-Butil Hidroperóxido , Humanos , Células CACO-2 , terc-Butil Hidroperóxido/farmacologia , Folhas de Planta/química , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo/efeitos dos fármacos , Eupatorium/química , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo
4.
Bioorg Chem ; 148: 107426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733750

RESUMO

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Assuntos
Inibidores Enzimáticos , Heme , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia
5.
Front Pharmacol ; 15: 1356598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666018

RESUMO

Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.

6.
Heliyon ; 10(2): e24266, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293391

RESUMO

Background: Melatonin is an indoleamine hormone secreted by the pineal gland at night and has an essential role in regulating human circadian rhythms (the internal 24-h clock) and sleep-wake patterns. However, it has recently gained considerable attention for its demonstrated ability in disease management. This review discusses the major biological activities of melatonin, its metabolites as nutritional supplements, and its bioavailability in food sources. Methods: The information acquisition process involved conducting a comprehensive search across academic databases including PubMed, Scopus, Wiley, Embase, and Springer using relevant keywords. Only the most recent, peer-reviewed articles published in the English language were considered for inclusion. Results: The molecular mechanisms by which melatonin induces its therapeutic effects have been the subject of various studies. Conclusion: While melatonin was initially understood to only regulate circadian rhythms, recent studies indicate that it has a far-reaching effect on various organs and physiological systems, such as immunity, cardiovascular function, antioxidant defense, and lipid hemostasis. As a potent antioxidant, anti-cancer, anti-inflammatory, and immunoregulatory agent, multiple therapeutic applications have been proposed for melatonin.

7.
Bioinformation ; 19(11): 1075-1080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046516

RESUMO

It is of interest to develop potent and safer anti-inflammatory drugs from plants, as medicinal plants and herbs attained great attention in the medical world due to their multifunctional activities. This article studied the anti-inflammatory effects of lauric acid (LA), thiocolchicoside (TC) and thiocolchicoside-lauric acid (TC-LA) formulation. The anti-inflammatory effects of these compounds were determined by following the methods of inhibition of protein denaturation and proteinase inhibition activity. This was assessed at different concentrations to determine the 50% inhibition concentration (IC50) of the compounds. The result indicated that the activity of LA, TC, TC-LA formulation, and reference drug increased with the increase in the concentration from 10-50 µg/ml, thus proving the activity of LA, TC, and TC-LA formulation against inflammation was in a dose-dependent manner. The percentage of inhibition of protein denaturation was 59.56%, 66.94%, 86.62%, and 60.34% for LA, TC, the combination of TC-LA and standard drug, and the IC50 values were found to be 44.78 µg/mL, 37.65 µg/mL, 27.15 µg/mL and 43.42 µg/mL, respectively. The percentage of proteinase inhibition activity of LA, TC, and a combination of TC-LA and the standard drug was 66.65%, 77.49%, 94.07%, and 69.83%, and IC50 of LA, TC, a combination of TC-LA and standard drug were35.5 µg/mL, 32.12 µg/mL, 24.35 µg/mL and 37.80 µg/mL, respectively. We found out that lauric acid, thiocolchicoside, and thiocolchicoside-lauric acid formulation exhibited significant anti-inflammatory activity.

8.
Bioinformation ; 19(5): 638-643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886141

RESUMO

The current study concentrated on the green synthesis of Zinc-titanium dioxide nano-composite (Zn-TiO2 NC) through the use of lemon extract, optimizing the different experimental factors required for the formation and stability of nanocomposite. The preparation of nanocomposite was confirmed by the observation of the colour change and the surface plasmon resonance band was found at 380 nm, utilizing UV-Visible analysis. The TEM analysis, the morphological features of the prepared nanocomposite was identified to be spherical shape with mean particle size of 25 nm. In addition, the antibacterial, antioxidant, and anti-inflammatory activity of this nano-composite were also investigated. The biosynthesized nanocomposite showed excellent antibacterial activity against S. mitis and S. mutans. The obtained results indicate that the antioxidant and anti-inflammatory activity of this nanocomposite is significant. This bioactive nanocomposite can be used as an effective antibacterial, antioxidant and anti-inflammatory agent in biomedical and pharmacological fields for future applications.

9.
Biochem Pharmacol ; 216: 115790, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683842

RESUMO

Age-related macular degeneration (AMD) is a common eye disease among the elderly, which can result in impaired vision and irreversible loss of vision. The majority of patients suffer from the dry (also known as the atrophic) form of the disease, which is completely lacking an effective treatment. In the present study, we evaluated the potential of cis-urocanic acid (cis-UCA) to protect human ARPE-19 cells from cell damage and inflammasome activation induced by UVB light. Urocanic acid is a molecule normally present in human epidermis. Its cis-form has recently been found to alleviate UVB-induced inflammasome activation in human corneal epithelial cells. Here, we observed that cis-UCA is well-tolerated also by human retinal pigment epithelial (RPE) cells at a concentration of 100 µg/ml. Moreover, cis-UCA was cytoprotective and efficiently diminished the levels of mature IL-1ß, IL-18, and cleaved caspase-1 in UVB-irradiated ARPE-19 cells. Interestingly, cis-UCA also reduced DNA damage, whereas its effect against ROS production was negligible. Collectively, cis-UCA protected ARPE-19 cells from UVB-induced phototoxicity and inflammasome activation. This study indicates that due to its beneficial properties of preserving cell viability and preventing inflammation, cis-UCA has potential in drug development of chronic ocular diseases, such as AMD.

10.
Exp Ther Med ; 26(4): 481, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745043

RESUMO

Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.

11.
Tissue Eng Regen Med ; 20(6): 965-979, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589886

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is an incurable disease that negatively influences the quality of life of patients. Current and emerging therapies target proinflammatory cytokines and/or receptors to downregulate proinflammatory responses, but insufficient remission requires other therapeutic agents. Herein, we report that the synthetic anti-inflammatory peptide 15 (SAP15) is capable of cell penetration and anti-inflammatory activity in human macrophages. METHODS: SAP15 was labeled with fluorescence and administered to human leukemia monocytic cells (THP-1) cells for cell penetration analysis. Using biolayer interferometry analysis, the binding affinity of SAP15 with histone deacetylase 5 (HDAC5) was measured. SAP15-treated THP-1 cells were analyzed by protein phosphorylation assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). In addition, in vivo analysis of the therapeutic effect on IBD was observed in a dextran sulfate sodium (DSS)-induced model. Samples from SAP15-treated mice were analyzed at both the macroscopic and microscopic levels using ELISA, myeloperoxidase (MPO) assays, and histological evaluations. RESULTS: SAP15 was internalized within the cytosol and nucleus of THP-1 cells and bound to the HDAC5 protein. SAP15-treated macrophages were assessed for protein phosphorylation and showed inhibited phosphorylation of HDAC5 and other immune-related proteins, which led to increased M2-like macrophage markers and decreased M1-like macrophage markers and tumor necrosis factor-α and interleukin-6 cytokine levels. The SAP15 treatment on IBD model showed significant recovery of colon length. Further histological analysis of colon demonstrated the therapeutic effect of SAP15 on mucosal layer. Moreover, proinflammatory cytokine levels and MPO activity from the plasma show that SAP15 is effective in reduced proinflammatory responses. CONCLUSION: These findings suggest that SAP15 is a novel peptide with a novel cell-penetrating peptide with anti-inflammatory property that can be used as a therapeutic agent for IBD and other inflammatory diseases.


Assuntos
Peptídeos Penetradores de Células , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Peptídeos Penetradores de Células/efeitos adversos , Qualidade de Vida , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Histona Desacetilases/efeitos adversos
12.
Eur J Med Chem ; 255: 115417, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137246

RESUMO

Inflammation is one of a major feature of Parkinson's disease (PD) which poses a threat to people's health in the world. It has been reported that antioxidation and anti-inflammation have significant effects on the treatment of PD. 1,2,4-oxadiazole and flavone derivatives have remarkable antioxidant and anti-inflammatory activities. In order to find highly effective drugs for PD treatment, based on the remarkable anti-inflammatory and antioxidant activities of the 1,2,4-oxadiazole pharmacophore and the flavonoid pharmacophore, we designed and synthesized a novel series of 3-methyl-8-(3-methyl-1,2,4-oxadiazol-5-yl)-2-phenyl-4H-chromen-4-one derivatives by pharmacophore combination, and evaluated their anti-inflammatory and antioxidation activities for PD treatment. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against reactive oxygen species (ROS) and NO release in LPS-induced BV2 Microglia cells, and the optimal compound Flo8 exhibited the most potent anti-inflammatory and antioxidant activities. Both in vivo and in vitro results showed that Flo8 inhibited neuronal apoptosis by inhibiting inflammatory and apoptotic signaling pathways. In vivo studies also showed that the compound Flo8 ameliorated motor and behavioral deficits and increased serum dopamine levels in MPTP-induced PD model mice. Taken together, this study demonstrated the compound Flo8 could be a promising agent for the treatment of PD.


Assuntos
Flavonas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Antioxidantes/farmacologia , Oxidiazóis/farmacologia , Oxidiazóis/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Relação Estrutura-Atividade , Flavonas/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Microglia
13.
Taiwan J Ophthalmol ; 13(1): 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252177

RESUMO

Dry eye disease (DED) is a common chronic ocular disease. DED can have a significant impact on visual function, causing disturbances to comfort, daily activities, and general quality of life. The varied nature of DED makes it difficult to point to a specific cause of the syndrome. However, current literature agrees that the inflammation of the cornea and conjunctiva plays a major role in its pathogenesis. Therapies targeted toward inflammation have shown varied success in the treatment of DED. The purpose of this review is to provide an overview of the prevalence and inflammatory pathophysiology of DED and discussion of the available anti-inflammatory therapies including the following: Nonsteroidal anti-inflammatory drugs, corticosteroids, and other hormonal therapies, nonsteroidal immunomodulators, biological tear replacement, antibiotics, dietary supplements, tea tree oil, and intense pulsed light.

14.
Neurosci Biobehav Rev ; 148: 105120, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906244

RESUMO

Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.


Assuntos
Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Animais , Antineoplásicos/efeitos adversos , Qualidade de Vida , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
15.
Br J Pharmacol ; 180(15): 1930-1948, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36788033

RESUMO

BACKGROUND AND PURPOSE: Chronic inflammation is pathogenic and contributes to human diseases, causing a significant threat to public health. The NLR family pyrin domain-containing protein 3 (NLRP3) is the best-characterized factor regulating inflammation. Therefore, targeting NLRP3 has the potential to treat inflammatory diseases and improve human health. EXPERIMENTAL APPROACH: Lipopolysaccharide was used to induce inflammation in cell cultures. Lipopolysaccharide/d-galactosamine and dextran sulfate sodium salt were used to induce acute liver inflammation and ulcerative colitis respectively in C57BL/6J mice. Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the activation of the inflammatory response in cell cultures and in mice. KEY RESULTS: JNUTS013, a novel sorbicillinoid compound recently synthesized by us, significantly inhibited inflammation both in cell cultures and in mouse models. Mechanistically, JNUTS013 induced proteasome-dependent degradation of NLRP3. Hence, it suppressed the formation of the NLRP3 inflammasome and the production of downstream inflammatory cytokines and chemokines. The inhibitory effect of JNUTS013 on NLRP3 protein expression was confirmed in mice. Importantly, JNUTS013 failed to ameliorate bowel inflammation in Nlrp3-/- knockout mice, supporting NLRP3 as the biological target by which JNUTS013 inhibits inflammation. Further studies revealed critical chemical moieties of JNUTS013 required for inducing NLRP3 degradation. CONCLUSION AND IMPLICATIONS: This study identifies a novel compound JNUTS013 that inhibits inflammation through inducing NLRP3 protein degradation in vitro and in vivo, which not only supports the development of JNUTS013 as an anti-inflammation agent but also creates a new way for the treatment of inflammation by chemically inducing NLRP3 degradation.


Assuntos
Colite , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Sulfato de Dextrana , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteólise
16.
Nutr Rev ; 81(9): 1163-1179, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36647770

RESUMO

CONTEXT: Clinical studies have found an association between yerba maté intake and beneficial physiological effects. Nevertheless, no systematic reviews have been conducted to shed light on the data supporting this association. OBJECTIVE: The present systematic review aimed to investigate the physiological effects of yerba maté. DATA SOURCES: Searches were performed in 6 databases (Embase, LILACS, Scopus, PubMed, SciELO, Web of Science) and 3 grey literature databases (OpenGrey, ProQuest, Google Scholar). Relevant publications were identified, and the reference lists of included studies were searched manually for randomized clinical trials, nonrandomized clinical trials, and observational studies investigating the physiological effects of yerba maté. DATA EXTRACTION: Risk of bias was assessed using the Cochrane risk of bias tool for randomized trials and the Cochrane ROBINS-I (Risk Of Bias In Nonrandomized Studies of Interventions) tool. Joanna Briggs Institute critical appraisal tools were used for cross-sectional, case series, cohort, and case-control studies. The overall certainty of the evidence was estimated using the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) working group summary of findings table. DATA ANALYSIS: Of 1096 studies identified, 32 were included. Studies showed consistent effects of yerba maté intake on metabolism improvement and antioxidant and anti-inflammatory activities in different populations. Benefits for body weight and composition, exercise performance, mood, and appetite, in addition cardio- and neuroprotective effects, were also observed. Risk of bias was categorized as high in 22 studies, moderate in 9 studies, and low in 1 study. The certainty of evidence ranged from moderate to very low. CONCLUSION: The available literature indicates that yerba maté can be used within a balanced and healthy diet for prevention and adjuvant treatment of chronic diseases. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42020200196.


Assuntos
Ilex paraguariensis , Extratos Vegetais , Humanos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Estudos Transversais , Peso Corporal , Antioxidantes
17.
Arch Pharm (Weinheim) ; 356(2): e2200191, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344425

RESUMO

The blockade of the overexpression of pro-inflammatory cytokines by anti-inflammatory natural products has been proven therapeutically beneficial in the treatment of acute lung injury (ALI). Given the fact that cinnamic acid has been proven to have significant anti-inflammatory activity, we selected it as a promising lead compound to develop more effective analogs in treating ALI. Learning from the symmetric structure of curcumin, 32 new symmetric cinnamic derivatives were designed, synthesized, and evaluated for their anti-inflammatory activity. Among them, 6h not only displayed a remarkable inhibitory activity in vitro (85.9% and 65.7% for  IL-6 and TNF-α, respectively) without cytotoxicity but also possessed chemical structure stability. Furthermore, an in vivo study in mice revealed that the administration of 6h significantly attenuated lipopolysaccharide-induced ALI, providing new lead structures for the development of anti-inflammatory drugs for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Camundongos , Animais , Relação Estrutura-Atividade , Anti-Inflamatórios/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Pulmão
18.
Gut Liver ; 17(5): 814-824, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36510779

RESUMO

Background/Aims: The combinatorial effects of prophylactic methods for postendoscopic retrograde cholangiopancreatography pancreatitis (PEP) in patients with risk factors remain unclear. In this network meta-analysis, we compared the efficacy of various prophylactic strategies to decrease the risk of PEP among patients with risk factors. Methods: A systematic review was performed to identify randomized controlled trials from PubMed, Embase, and the Cochrane Library through July 2021. We used frequentist network meta-analysis to compare the rates of PEP among patients who received prophylactic treatments as follows: class A, rectal nonsteroidal anti-inflammatory drugs; class B, prophylactic pancreatic stent; class C, aggressive hydration; or control, no prophylaxis or active control. We selected those studies that included patients with risk factors for PEP. Results: We identified 19 trials, comprising 4,328 participants. Class ABC (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.03 to 0.24), class AC (OR, 0.10; 95% CI, 0.02 to 0.47), class AB (OR, 0.12; 95% CI, 0.05 to 0.26), class BC (OR, 0.13; 95% CI, 0.04 to 0.41), class A (OR, 0.16; 95% CI, 0.05 to 0.50), and class B (OR, 0.26; 95% CI, 0.14 to 0.46), were associated with a reduced risk of PEP as compared to that of the control. The most effective prophylaxis was ABC (0.87), followed by AC (0.68), AB (0.65), BC (0.56), A (0.49), and B (0.24) according to P-score. Conclusions: The results of this network meta-analysis suggest that the more prophylactic methods are employed, the better the outcomes. It appears that for patients with risk factors, we need to prevent PEP through the use of these well proven combination strategies.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Pancreatite , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Metanálise em Rede , Pancreatite/etiologia , Pancreatite/prevenção & controle , Pancreatite/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Pâncreas , Fatores de Risco
19.
Methods Mol Biol ; 2576: 261-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152194

RESUMO

N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal hydrolase degrading various N-acylethanolamines at acidic pH. NAAA prefers anti-inflammatory and analgesic palmitoylethanolamide to other N-acylethanolamines as a substrate, and its specific inhibitors are shown to exert anti-inflammatory and analgesic actions in animal models. Therefore, these inhibitors are expected as a new class of therapeutic agents. Here, we introduce an NAAA assay system, using [14C]palmitoylethanolamide and thin-layer chromatography. The preparation of NAAA enzyme from native and recombinant sources as well as the chemical synthesis of N-[1'-14C]palmitoyl-ethanolamine is also described.


Assuntos
Amidoidrolases , Etanolaminas , Amidas , Amidoidrolases/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Palmíticos
20.
Int J Nanomedicine ; 18: 8077-8097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164267

RESUMO

Purpose: Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods: A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results: Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 µg/mL, indicating 250-fold higher than native curcumin (8.68 µg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion: Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.


Assuntos
Curcumina , Camundongos , Animais , Curcumina/farmacologia , Curcumina/química , Micelas , Administração Cutânea , Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA