RESUMO
In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.
RESUMO
The search for a natural antimicrobial agent is ongoing and critical because of the rise and rapid proliferation of antibiotic-resistant pathogenic bacteria. The current study aims to examine the effect of Paenibacillus polymyxa AM20 as an alternative antibiotic and feed additive on Indian river broiler performance, digestive enzymes, thyroid hormones, lipid profile, hepatosomatic index, immunological response, gut bacteria, and antioxidant parameters. The bacterial isolate AM20 was identified at the gene level by isolating DNA and using PCR to detect genes. Based on 16S rRNA gene sequence analysis, the bacterial isolate was identified as Paenibacillus polymyxa. One hundred twenty Indian river broilers (1-day old) were randomly divided into 4 groups of 10 chicks each, with 3 replicates. The control group was fed a basal diet only, while the other 3 were administered control diets supplemented with P. polymyxa at 3 concentrations: 0.5, 1, and 1.5 mg/kg. The findings revealed that all groups that received graded amounts of P. polymyxa increased all growth parameters throughout the study. P. polymyxa treatment at 1.5 mg/kg increased body gain by 9% compared to the control due to increased feed intake (P = 0.0001), growth rate (P = 0.0001), and decreased feed conversion ratio. Compared to the control group, P. polymyxa (1.5 mg/kg) enhanced kidney functions in chickens by reducing uric acid and creatinine levels (P = 0.0451). Compared to the control group, alanine aminotransferase and aspartate transaminase levels in the liver were significantly reduced at all P. polymyxa doses. Liver function values were highest for P. polymyxa at 1.5 mg/kg. Compared to the control group, those whose diets included P. polymyxa had significantly better blood cholesterol levels, high-density lipoprotein, low-density lipoprotein, immunological response, thyroid function, and gut microbiota. In general, broiler chickens' economic efficiency was improved by including P. polymyxa in their diet, which also improved their growth performance, carcass dressing, specific blood biochemical levels and enzymes, and the composition of the gut microbiota.
Assuntos
Paenibacillus polymyxa , Probióticos , Animais , Antioxidantes/metabolismo , Galinhas/fisiologia , RNA Ribossômico 16S , Dieta/veterinária , Suplementos Nutricionais , Probióticos/farmacologia , Antibacterianos , Imunidade , Hormônios Tireóideos , Lipídeos , Ração Animal/análiseRESUMO
The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.
RESUMO
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
RESUMO
This study was conducted to evaluate the effects of OAs and EOs on growth performance, serum biochemistry, antioxidant enzyme activities, intestinal morphology, and digestive enzyme activities to replace AGP in broilers. Six hundred one-day-old broilers were allotted to five treatments with six replicates: (1) negative control (NC; basal diet); (2) positive control (PC; NC + 50 mg/kg bacitracin methylene disalicylate); (3) organic acids (OA; NC + 2000 mg/kg OA); (4) essential oils (EO; NC + 300 mg/kg EO); and (5) OA + EO (NC + 2000 mg/kg OA + 300 mg/kg EO). In the starter phase, the PC, EO, and OA + EO groups had a significantly lower feed conversion ratio (FCR) compared to the NC group. While the final body weight (BW) of broilers fed OAs was similar compared to broilers fed PC (p > 0.1), the FCR of the OA group tended to be lower than the PC group on D 42 (p = 0.074). The OA group had the higher serum GLOB:ALB (albumin) and ileal villus height and crypt depth (VH:CD) ratios compared to the EO group. Thus, the supplementation of EOs and OAs could substitute AGP in the starter and finisher phase, respectively.