Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 993
Filtrar
1.
J Contam Hydrol ; 267: 104422, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39260022

RESUMO

The contaminant mass discharge is a relevant metric to evaluate the risk that a groundwater plume poses to water resources. However, this assessment is often vitiated by a high uncertainty inherent to the assessment method and often limited number of measurement points to carry out the assessment. Direct-Push techniques in combination with profiling tools and dedicated sampling can be an interesting alternative to increase the measurement point density and hence reduce the mass discharge uncertainty. The main objective of our study was to assess if DP logging and sampling could be employed to get a reasonable estimate of contaminant mass discharge in a large sulfonamide contaminant plume (> 1500 m wide), compared to a more traditional approach based on monitoring wells. To do so, an Hydraulic Profiling Tool (HPT) logging with a dedicated site calibration was used to estimate the hydraulic conductivity field. The sulfonamide concentrations were inferred from the compound fluorescence properties measured by laboratory spectrofluorometry (λEx / λEm = 255/340 nm) and a dedicated log-log linear regression model. Our results show that HPT-derived hydraulic conductivity values are in good agreement with the monitoring well results, and within the order of magnitude reported in similar studies or indirect geophysical techniques. Fluorescence appears as a powerful proxy for the sulfonamide concentration levels. Ultimately, the contaminant mass discharge estimate from HPT and fluorescence techniques lies within a factor 2 from the estimate by monitoring wells, with 549 [274-668] and 776 [695-879] kg/yr respectively. Overall, this study highlights that DP logging tools combined with indirect methods (correlation with fluorescence) could provide a relevant contaminant mass discharge estimate for some optically active substances, given that a proper calibration phase is carried out.

2.
Water Res ; 266: 122375, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39260194

RESUMO

Frequent occurrence of trace antibiotics in reclaimed water is concerning, which inevitably causes aquifer contamination in the case of managed aquifer recharge (MAR). Global governments have formulated strict reclaimed water standards to ensure the safety of water reuse. Recent studies have found that improved antibiotics removal is intimately associated with high ammonia-oxidizing activity. However, the role of NH4+-N in the removal of residual antibiotics of reclaimed water during MAR remains unknown. NH4+-N removal and the effects of ammonia oxidation on antibiotics biodegradation in the aquifer are the most significant facts for solving the above collision. In this work, the effects of NH4+-N (0, 1 and 5 mg/L) in a model refractory antibiotic (oxacillin (OXA), 100 µg/L) attenuation were deciphered by employing three individual simulated MAR columns, which so called N0, N1 and N5. The results showed that 5 mg/L NH4+-N in influent upregulated the abundance of amo genes by 28.9 %-68.0 % in N5. And the enriched functional genes encoding key degradation enzymes enhanced the OXA removal by 18.7 % and alleviated the oxidative stress caused by antibiotics. Subsequently, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) and human bacterial pathogens (HBPs) abundance were all significantly decreased. Moreover, the intimate association between ammonia-oxidizing microorganisms (AOM) and candidate OXA degraders based on microbial network analysis further supported the significance of AOM on OXA biodegradation. This study provides comprehensive evidence that appropriate amounts of NH4+-N are beneficial in antibiotics and antibiotic resistance risk reduction, providing compelling insights for refine NH4+-N recharge limitation.

3.
Chemosphere ; 365: 143375, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306110

RESUMO

Wildfires induce changes in soil and vegetation composition, significantly impacting the hydrological cycle and altering future runoff and infiltration patterns. Ash residue on the ground can infiltrate the subsoil along with water, leading to modifications in groundwater hydrochemistry. Climate change and summer heatwaves can create favourable conditions for severe wildfires, such as the one that occurred in Zamora, Spain, in 2022. Fourteen simultaneous points of origin across various locations in Zamora triggered the worst environmental disaster in this province, as well as the largest fire recorded in the history of Spain. Following the severe wildfires in Sierra de la Culebra, Zamora, groundwater samples were obtained to compare the hydrochemistry with pre-fire background data spanning several years. A general decline in pH across all sampling points was observed, most notably at Z1, likely due to its very high permeability and leaching of organic acids from burned vegetation. Increases in major ions such as SO42- and NO3- were detected at Z1-2, while HCO3- levels decreased, indicating possible oxidation of soil organic matter and the introduction of wildfire-derived organic acids into the groundwater system. Elevated concentrations of Na+, K+, Mg2+, and Ca2+ were observed at Z3, suggesting possible ash residue infiltration. Despite the severity of the wildfires, the results indicate that there were no significant long-lasting impacts on groundwater quality overall. This finding suggests that the groundwater systems in the study area are resilient to such environmental catastrophes.

4.
Sci Total Environ ; 953: 176094, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244055

RESUMO

Elevated ammonium (NH4-N) contents in groundwater are a global concern, yet the mobilization and enrichment mechanisms controlling NH4-N within riverside aquifers (RAS) remain poorly understood. RAS are important zones for nitrogen cycling and play a vital role in regulating groundwater NH4-N contents. This study conducted an integrated assessment of a hydrochemistry dataset using a combination of hydrochemical analyses and multivariate geostatistical methods to identify hydrochemical compositions and NH4-N distribution in the riverside aquifer within Central Yangtze River Basin, ultimately elucidating potential NH4-N sources and factors controlling NH4-N enrichment in groundwater ammonium hotspots. Compared to rivers, these hotspots exhibited extremely high levels of NH4-N (5.26 mg/L on average), which were mainly geogenic in origin. The results indicated that N-containing organic matter (OM) mineralization, strong reducing condition in groundwater and release of exchangeable NH4-N in sediment are main factors controlling these high concentrations of NH4-N. The Eh representing redox state was the dominant variable affecting NH4-N contents (50.17 % feature importance), with Fe2+ and dissolved organic carbon (DOC) representing OM mineralization as secondary but important variables (26 % and 5.11 % feature importance, respectively). This study proposes a possible causative mechanism for the formation of these groundwater ammonium hotspots in RAS. Larger NH4-N sources through OM mineralization and greater NH4-N storage under strong reducing condition collectively drive NH4-N enrichment in the riverside aquifer. The evolution of depositional environment driven by palaeoclimate and the unique local environment within the RAS likely play vital roles in this process.

5.
J Environ Radioact ; 280: 107529, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326292

RESUMO

In Sub-Saharan Africa, hand pump-fitted water wells (HPWs) are characterized by poor functionality marked by rapid post-construction decline in yield. A substantial number of the HPWs show a low degree of reliability and poor water quality. Monitoring changes in performance is prerequisite to inform preventive maintenance of the HPWs. Borehole performance monitoring often requires a logistically demanding pumping test procedure. Here we demonstrate the applicability of a naturally occurring Radon-222 isotope (222Rn) as a complementary tool to monitor post-construction performance of HPWs. We measured 222Rn recovery (the ratio of 222Rn in the HPWs to that of the aquifer) in 32 HPWs and the host aquifers. Pumping and reliability tests have been conducted on the HPWs before taking the 222Rn measurements. The HPWs have been classified into four functionality classes a) high yield and reliable, b) high yield but unreliable, c) low yield and reliable and d) low yield and unreliable. In the first category, there is a high 222Rn recovery revealing a quick through flow of groundwater in the wells. This further demonstrates the healthy functioning of boreholes without screen clogging effects and a high permeability of the aquifer material in the vicinity of the well. The fourth category shows the lowest 222Rn recovery revealing a slow flow of water in the well owing to low permeability, declining water level, screen clogging, poor initial design and high water stagnation in the boreholes. The substantial difference in 222Rn recovery between the four categories reveals the isotopic tracer can be used as a promising independent tool to monitor post-construction changes in the performance of HPWs without the need for dismantling the HPWs for inspection.

6.
Sci Rep ; 14(1): 22299, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333213

RESUMO

Improving the living condition of residents of Palladan and Basawa community requires access to drinking water. The main objectives of this paper are to identify suitable groundwater zones for productive drilling and to assess groundwater mineralization in the coastal aquifers of the study area. Geographic Information Systems (GIS) and Analytical Hierarchy Process (AHP) were used in the methodology to generate the groundwater potential map. Slope, landcover/land use, lineament density, rainfall, soil cover and drainage density were taken into account to characterize the groundwater potential zones. Weights were assigned to the various parameters and their characteristics according to their impact on groundwater recharge. The groundwater potential map was classified into five zones namely: poor, fair, moderate, good, excellent. Based on the lineament density map, the distribution of these lineaments reveals the degree of porosity or permeability in each area and, consequently, its groundwater potential. Aeromagnetic data filtering permits the construction of a structural map that illustrates various geophysical lineaments that are known to be fault systems in the research area. These faults are the main routes via which groundwater seeps into the subsurface and granitoid-type magnetic rocks intrude into the basement. The research region is badly fractured/failed and made up of four lithologic units, including the aquifer layer (clayey sands in the cracked basement) with thicknesses varying from 12-55 m, according to the vertical electrical sounding (VES) applications. According to geoelectric cross-sections, the subsurface structures are made of granitic rocks that are surrounded by normal faults that trend both NW and NE. It is believed that groundwater flows into the hard rock aquifers in the studied locations through these notable geological features, such as faults and fractures. Two phenomena are responsible for the mineralization of water: a process of interaction between water and rock; and a process of salinization resulting from natural phenomena or anthropic activities. The present study could guide hydrogeological investigations and groundwater resource management planning in the study area.

7.
J Contam Hydrol ; 267: 104438, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39342694

RESUMO

The over-pumping of freshwater makes shoreline aquifers susceptible to seawater intrusion. Most studies on aquifer homogeneity that are used to form management guidelines focus on salinization sensitivity. However, under certain extraction conditions, the geographic structure can be quite diverse, with low-permeability obstacles and preferred flow routes that affect circulation and saline transport mechanisms. Here, we used a laboratory-scale glass box apparatus of dimension 100 × 50 × 10 cm3 to study intrusion in stratified layers under the influence of an inclined ocean-aquifer boundary with a mixed barrier as a remediation technique. The TL\H ratio ranged from 0.2 to 12.84 for all stratification conditions and remediation installed. There was a 40-48 % decrease in the extent of toe length after installation. With a mixed barrier installed, the height of the intrusion was reduced, resulting in an increase in the TL\H and a decrease in the potential for toe length. The intrusion was delayed by 86.67 % in parallel stratification and 28.22 % in perpendicular stratification after comparing the time frame for base case and the mixed barrier installed condition. A parabolic profile of intrusion was observed in the low-permeability layer, while a convex-outward profile was observed in the higher-permeability layers. Similar results are obtained after conducting the sensitivity analysis. The intrusion follows an increasing pattern of ratio with increasing interaction gap opening in parallel stratification, while for perpendicular stratification, with gap opening from 10 cm to 30 cm, there was a decreasing trend followed by an increasing trend, indicating an increase in magnitude with a similar pattern of intrusion. The results of this investigation shed light on the mixed barrier's suitability for use in realistically diverse coastal aquifers. Future research could explore the utilization of different combinations of new barriers, such as under-surface barriers, which work well for stratified layers, and already established barrier systems, to further improve the efficiency of mixed barriers.

8.
Sci Total Environ ; 954: 176015, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241882

RESUMO

The insufficient taking into account of groundwater as a basis for implementing protection measures for coastal wetlands can be related to the damage they are increasingly exposed to. The aim of this study is to demonstrate the pertinence of combining hydrogeological tools with assessment of pollutant fluxes and stable isotopes of O, H and N, as well as groundwater time-tracers to identify past and present pollution sources resulting from human activities and threatening shallow groundwater-dependent ecosystems. A survey combining physico-chemical parameters, major ions, environmental isotopes (18O, 2H, 15N and 3H), with emerging organic contaminants including pesticides and trace elements, associated with a land use analysis, was carried out in southern Italy, including groundwater, surface water and lagoon water samples. Results show pollution of the shallow groundwater and the connected lagoon from both agricultural and domestic sources. The N-isotopes highlight nitrate sources as coming from the soil and associated with the use of manure-type fertilizers related to the historical agricultural context of the area involving high-productivity olive groves. Analysis of EOCs has revealed the presence of 8 pesticides, half of which have been banned for two decades and two considered as pollutant legacies (atrazine and simazine), as well as 15 molecules, including pharmaceuticals and stimulants, identified in areas with human regular presence, including rapidly degradable compounds (caffeine and ibuprofen). Results show that agricultural pollution in the area is associated with the legacy of intensive olive growing in the past, highlighting the storage capacity of the aquifer, while domestic pollution is sporadic and associated with regular human presence without efficient modern sanitation systems. Moreover, results demonstrate the urgent need to consider groundwater as a vector of pollution to coastal ecosystems and the impact of pollutant legacies in planning management measures and policies, with the aim of achieving 'good ecological status' for waterbodies.

9.
Sci Total Environ ; 954: 176194, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270874

RESUMO

Since microplastics (MPs) were first detected in groundwater, an increasing number of studies have focused on groundwater pollution by MPs. However, knowledge of the global properties of groundwater MPs: distribution, concentration, composition, and morphology remains limited, while potential factors regulating their transport and distribution in groundwater, especially the hydrogeological background and climate warming conditions, have been omitted from most analyses. Furthermore, previous field investigations did not assess the risks posed by groundwater MPs to the environment and to human health, a necessary preliminary to remediation. In this work, to promote future MP pollution studies and remediation policies, we assimilated and synthesized the current knowledge on this topic. We reviewed current data on global groundwater pollution by MPs, analyzed the driving factors of their transport and distribution, and summarized the ecological and health hazards posed by MPs, before discussing current knowledge limits and suggesting perspectives for future work.

10.
Environ Geochem Health ; 46(10): 409, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215896

RESUMO

Due to water shortages and the potential impact of Ethiopia's new dam on the Nile River, Egypt is seeking new water resources. This study assesses the drinking water quality and associated risks from potentially toxic elements (PTEs) in the Quaternary aquifer (QA) in Beni-Suef, Egypt. Using a comprehensive approach, including PHREEQC geochemical modeling, ionic ratios, multivariate statistical analyses, and the integrated weight water quality index (WQI), the study evaluated the sources of ion contamination and the mixing of Nile water with QA. Various indices, such as the Heavy Metal Pollution Index (HPI), ecological Risk Index (RI), Hazard Quotient (HQ), and Hazard Index (HI), were used to assess ecological and health risks. Monte Carlo simulations provided probabilistic assessments of non-carcinogenic risks for adults and children. GIS tools were used to map risk indices, identifying the most deteriorated locations for sustainable management. The hydrochemical analysis revealed water facies including Na-Cl, Ca-Mg-HCO3, and mixed types, influenced by carbonate dissolution, ion exchange, and silicate weathering. Contamination sources, particularly in the north and south, were linked to agricultural activities, irrigation return flow, municipal waste, and evaporation. The WQI indicated that 10.14% of samples were extremely poor, 21.7% were poor, 26% were medium, and 42% were good to excellent. PTE contamination varied, with HPI values indicating good water quality in the central area in 53.6% of the collected samples (HPI < 30), but contamination in the north and south is high (HPI > 51). Ecological Risk Index values were below the threshold in 100% of samples (RI < 30), confirming water safety regarding PTEs. In comparison, for hazard index (HI) through oral/ingestion, adults exhibited HI values ranging from 0.012 to 2.16, while children showed higher values, ranging from 0.045 to 8.25. However, the hazard index for oral/ingestion exceeded safe limits in the north and south (HI oral > 1), posing non-carcinogenic risks. Monte Carlo simulations revealed significant risks from oral exposure to manganese (HQ oral > 1), particularly in El-Wasta and El-Fashn, necessitating further treatment and management.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Humanos , Egito , Monitoramento Ambiental/métodos , Método de Monte Carlo , Água Subterrânea/química , Metais Pesados/análise , Água Potável/química , Simulação por Computador
11.
Environ Sci Technol ; 58(33): 14687-14697, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115966

RESUMO

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland-upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.


Assuntos
Água Subterrânea , Oxirredução , Áreas Alagadas , Água Subterrânea/química
12.
Environ Pollut ; 361: 124826, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197644

RESUMO

Identifying spatiotemporal variation of groundwater NO3-N and its primary controlling factors are vital for groundwater protection. This study, under the data scarce conditions and based on time series monitoring data in Dagu aquifer, applied methods including hydrochemical ion ratio, multiple linear regression, support vector regression and grey relational analysis and dedicated to revealing primary controlling factors of temporal variation patterns of groundwater NO3-N. The results showed that agricultural and manure fertilizer are the main sources of NO3-N in north and central area (vegetable farming area), and that domestic sewage discharge and manure fertilizer are the main sources of NO3-N in south area (residential and grain planting area). In addition, results identified the dominant influencing factors of variation of NO3-N in different regions, with human wastewater discharge, nitrogen load amount and water-table depth being the dominant factors of variations of NO3-N in north area, human wastewater discharge being the main factor of variations of NO3-N in central area, and irrigation water and human wastewater being the leading factors of variations of NO3-N in south area. Moreover, types of controlling factors can influence the seasonal variations of NO3-N. NO3-N in vegetable farming area that dominantly affected by fertilization generally shows higher concentration and larger variation range of concentration during summer and autumn than that during spring. NO3-N which mainly affected by human wastewater discharge and manure inputs shows minimal seasonal variation of mean concentration. NO3-N in grain area influenced by irrigation could show more significant variations during spring and autumn than that during summer. The conclusions can enhance understandings of major influencing factors on NO3-N variation in local aquifer. Importantly, the dominant roles of water-table depth and irrigation in NO3-N variation of N2 site (vegetable planting area) and S5 site (grain planting area), respectively, were highlighted.

13.
Environ Sci Pollut Res Int ; 31(38): 50261-50282, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088177

RESUMO

This study integrated hydrochemical analysis, isotopic analysis, the integrated water quality index (IWQI), and the health risk assessment model to analyze hydrochemical characteristics, quality, and nitrate health risks in a typical agricultural and industrial (i.e., Holocene and Pleistocene) simultaneously affected by anthropogenic activities, as well as to explore the recharge mechanisms of the groundwater. The shallow groundwater is mainly Ca-HCO3- and deep groundwater is mainly Na-HCO3- types. In shallow and intermediate aquifers (Holocene), rainfall recharge is seen, but in deep aquifers (Holocene) and the Madhupur tract (Pleistocene), there is no evidence of recent recharge from the stable isotopic (δ2H‰ and δ18O‰) composition of groundwater. Anthropogenic sources significantly impacted the groundwater chemistry of shallow and intermediate aquifers more than geogenic sources. Most metalloids, and metals (As, and Cr, Fe, Ni, Pb, and Mn) and NO3- exceed the WHO-2011 and BD acceptable limit from shallow and intermediate groundwater. PCA analysis revealed the contamination of shallow and intermediate aquifers by metalloids, metals and from various anthropogenic activities. Based on the IWQI, HPI, HEI, and DC, groundwater samples from shallow and intermediate aquifers are unsuitable for oral consumption. The NPI shows that the metalloids, and metals are responsible for groundwater pollution in a descending order of As > Fe > Pb > Ni > Cr > Mn. Health risk assessment indicates oral and dermal consumption of contaminated water from shallow and intermediate aquifers can pose carcinogenic and non-carcinogenic health risks for both the adults and the children. The HQ and HI values of shallow and intermediate groundwater indicates higher non-carcinogenic risk. Carcinogenic risk through oral and dermal consumption follows an order of As > Ni > Cr > Pb and Ni > Cr > As > Pb, respectively. Compared to adults, children are more susceptible to both carcinogenic and non-carcinogenic risks. Potential threats to the health of people living in the study region need immediate attention from the public, government, and the scientific community.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Medição de Risco , Bangladesh , Poluentes Químicos da Água/análise , Humanos
14.
Environ Geochem Health ; 46(9): 358, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088124

RESUMO

Groundwater is the main source of water for more than 2 billion people worldwide. In southern Brazil, the Crystalline Basement Aquifer System is composed of strategic groundwater reservoirs. Groundwater is mostly taken from shallow wells, and it is often used without any treatment, which poses a risk to public health. The present study aims to evaluate shallow groundwater quality and the geochemistry of shallow and deep groundwater located in the municipality of Canguçu, southern Brazil. The physicochemical and microbiological parameters of groundwater samples collected from shallow wells were monitored and analyzed using ANOVA variance analysis and water quality index (CCME WQI) approaches. Also, the results were compared with secondary data from deep wells. The monitored shallow wells had thermotolerant coliforms, Escherichia coli, pH, potassium, manganese, iron, and nitrate in disagreement with the guidelines of the World Health Organization. Moreover, variance analysis showed that the parameters temperature, dissolved oxygen, pH, chloride, and magnesium were the most influenced by seasonal variations. According to the CCME WQI, most samples had good quality (60%), 28% had fair quality, and 12% had poor quality. In addition, the field campaigns with higher precipitation rates also presented fair quality. Therefore, most of the shallow groundwater quality is affected by surface pollutants from the urban area, aggravated in rainy periods. Whereas deep groundwater is influenced by geochemistry mechanisms. The results revealed the risk of water consumption for public health and the urgent need for better maintenance of these wells and water treatment implementation.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Qualidade da Água , Água Subterrânea/química , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Microbiologia da Água , Estações do Ano , Poços de Água , Nitratos/análise
15.
Water Res ; 263: 122145, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098156

RESUMO

To counteract the ongoing salinization of coastal aquifers, which poses a significant environmental and socioeconomic challenge to local communities, it is necessary to first understand the origin and mechanisms of this phenomenon. This study investigates the origins of salinity in the Volturno River lowland in Southern Italy and reveals that the primary source in the area is paleo-seawater entrapped within sediments that were subject to evapoconcentration processes. By systematically collecting sediment samples at variable depths and locations and extracting porewaters, a comprehensive understanding of the interplay between freshwater and saline water was gained, including complex patterns of vertical stratification of groundwater salinity. The study highlights the limitations of traditional methods that rely on salinity monitoring via integral depth sampling, particularly in capturing the vertical redox and salinity gradients characteristics of layered aquifer/aquitard systems. On the contrary, environmental tracers, like chloride and bromide, provide valuable insights into the sources of groundwater salinity, distinguishing between current seawater intrusion and other causes, such as paleo-seawater and return flow from drained agricultural land. Results suggest that the majority of salinity does not originate from modern seawater intrusion or recent evaporation. Instead, it can be attributed to paleo-seawater affected by evapoconcentration processes. This study has broader implications for the sustainable management of coastal aquifers and the safeguarding of freshwater resources. While our findings are specific to the Volturno River coastal area, the methodologies and insights here presented can be reproduced in every coastal region facing similar salinity challenges.


Assuntos
Sedimentos Geológicos , Água Subterrânea , Rios , Salinidade , Itália , Monitoramento Ambiental/métodos , Água do Mar/química
16.
Sci Total Environ ; 950: 175232, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111444

RESUMO

Geological CO2 sequestration is a proven method for mitigating climate change by reducing atmospheric CO2 levels. However, CO2 injection often induces salt precipitation, leading to decreased formation permeability, which in turn limits CO2 injectivity and storage capacity. Conventional approaches, such as freshwater and low-salinity water injection, have been employed to mitigate salt precipitation. Despite their widespread use, these methods provide only temporary improvement and can be ineffective in some scenarios, resulting in long-term issues such as salt recrystallization and clay swelling. Given the complexity and significance of this issue, a comprehensive review of salt precipitation mechanisms and remediation techniques is essential. This paper critically examines the processes of salt precipitation during CO2 injection in saline aquifers and evaluates various remediation techniques aimed at improving CO2 injectivity. The paper reviews the influence of CO2 flow dynamics, geochemical reactions, and fluid properties on salt precipitation and pore throat accumulation, assessing the efficacy and limitations of existing mitigation methods. Additionally, the paper explores alternative techniques with potential for long-term CO2 sequestration, analyzing their advantages and drawbacks. Based on insights from the reviewed sources, the paper recommends exploring alternative treatment measures and the integration of hybrid solutions to enhance CO2 injectivity. The findings presented serve as a valuable reference for advancing research and practice in this critical area, offering a deeper understanding of the challenges and potential solutions for effective CO2 sequestration in saline aquifers.

17.
Environ Sci Pollut Res Int ; 31(40): 53219-53236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39180658

RESUMO

The rising heavy metal (HM) pollution in coastal aquifers in rapidly urbanizing areas such as Dammam leads to significant risks to public health and environmental sustainability, challenging compliance with Environmental Protection Agency (EPA) guidelines, World Health Organization (WHO) standards, and Sustainable Development Goals (SDGs) related to clean water and life on land. This study developed the predictive-based monitoring of HM concentrations, including cadmium (Cd), chromium (Cr), and mercury (Hg) in the coastal aquifers of Dammam, influenced by industrial, agricultural, and urban activities. For this purpose, dynamic system identification and machine learning (ML) models integrated with three ensemble techniques, namely, simple averaging (SAE), weighted averaging (WAE), and neuro-ensemble (N-ESB), were employed to enhance the accuracy, reliability, and efficiency of environmental monitoring systems. The experimental data were calibrated and validated in addition to k-fold cross-validation to ensure the predictive skills of the models. The methodology integrates extensive data collection across varied land uses in Dammam and accurate model calibration and validation phases to develop highly accurate predictive models. The findings proved that the N-ESB and Hammerstein-Wiener (HW) models surpassed other models in predicting the concentrations of all HM. For Cd, the N-ESB model achieved a root mean square error (RMSE = 0.0010 mg/kg). Similarly, Cr demonstrated superior performance (RMSE = 0.0179 mg/kg). Further numerical results indicated that the HW algorithm proved the most effective for Hg, with RMSE = 0.0000 mg/kg. The quantitative comparison suggested that the N-ESB model's consistently high performance and low error rates make it an optimal choice for real-time, precise monitoring and management of HM pollution in coastal aquifers. The outcomes of this research highlighted the importance of integrating advanced predictive modeling techniques in environmental science, providing significant and practical implications for policymaking and ecological management.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Humanos
18.
Chemosphere ; 364: 143030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121959

RESUMO

Groundwater is an often-overlooked resource, while its declining quantity and quality is of global concern. To protect and ensure stable quantity and quality of groundwater systems used as drinking water supplies, a common method is to artificially recharge these groundwater supplies with surface water, a process called managed aquifer recharge (MAR), that has been used globally for decades. However, surface waters used for MAR often contain elevated concentrations of anthropogenic chemicals of emerging concern (CECs), such as plastics, pesticides, pharmaceuticals and personal care products (PPCPs), or per- and polyfluoroalkyl substances (PFAS). When infiltrating this surface water, MAR can thus act as a shortcut for CECs into groundwater systems and eventually drinking water supplies. Especially PFAS are an example of very persistent contaminants showing atypical transport patterns during MAR and thus posing a risk for ground- and drinking water contamination. This systematic review addresses the transport process of CECs through MAR systems by looking at (1) common CEC concentrations in surface waters, (2) factors affecting CEC transport and possible retention during MAR, such as sorption and other physio-chemical mechanisms of CECs, biological and chemical decomposition, or hydrogeological properties of the MAR system, and (3) key contaminants leaching through the MAR systems as well as possible treatment options to improve the retention of CECs during MAR. Since we are facing increasing needs for high quality drinking water, lower CEC drinking water guidelines as well as an increasing number of identified CECs in surface waters, we conclude with a series of recommendations and future research directions to address these issues. Those include the need for regular monitoring programs specifically addressing CECs and especially not yet regulated, (very) persistent and (very) mobile contaminants, such as PFAS, as well as redesigned MAR systems to ensure stable ground- and drinking water quantity and quality.


Assuntos
Água Potável , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Água Potável/química , Abastecimento de Água , Praguicidas/análise , Plásticos/análise , Purificação da Água/métodos
19.
Chemosphere ; 364: 143154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173835

RESUMO

As climate change induces changes in water quality and available water quantity of drinking water supply sources, the final product water quality changes in terms of trace organics including disinfection byproducts (DBPs) formed during water treatment. In this study, the seasonal variability and speciation of DBPs across nine sample sites within a drinking water distribution system serving ∼400k people over a one-year period was investigated considering the governing parameters of water quality and treatment/transport/storage of finished water. The system considered treats surface water from a river and practices aquifer storage and recovery to address seasons water availability changes. Eighty-eight (88) sample sets were collected and held for 6-months in the laboratory to simulate extended storage scenarios associated with ASR operations, and each was analyzed at 9 different timesteps for concentration and speciation of chlorinated DBPs. Samples from groundwater influenced sites exhibited significantly lower total organic carbon (TOC) compared to other sites from the river source, and also were observed to have the lowest DBP formation. Three sites exceeded the Maximum Contaminant Level (MCL) for four total trihalomethanes (THM4) within 30-60 days of storage. Chloroform was the predominant THM4 species, even in groundwater-influenced locations, whereas di- and tri-chloroacetic acid (DCA and TCA) were the most prevalent haloacetic acids (HAA5). Extended water age at one site, coupled with low initial chlorine concentrations exhibited higher initial THM4 concentrations and flat DBP formation curves. The study results provide new insights into DBP occurrence and fate in drinking water distribution systems which consider water storage such as in ASR.


Assuntos
Desinfecção , Água Potável , Poluentes Químicos da Água , Purificação da Água , Abastecimento de Água , Água Potável/química , Poluentes Químicos da Água/análise , Abastecimento de Água/estatística & dados numéricos , Purificação da Água/métodos , Qualidade da Água , Rios/química , Água Subterrânea/química , Desinfetantes/análise , Trialometanos/análise , Estações do Ano , Monitoramento Ambiental
20.
Environ Sci Pollut Res Int ; 31(38): 50576-50594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103581

RESUMO

The critical role of groundwater in meeting diverse needs, including drinking, industrial, and agricultural, highlights the urgency of effective resource management. Excessive groundwater extraction, especially in coastal regions including Urmia Plain in NW Iran, disrupts the equilibrium between freshwater and saline boundaries within aquifers. Influential parameters governing seawater intrusion-groundwater occurrence (G), aquifer hydraulic conductivity (A), the height of groundwater level above the mean sea level (L), distance from the shore (D), impact of the existing status of seawater intrusion (I), and thickness of the saturated aquifer (T)-merge to shape the GALDIT vulnerability index for coastal aquifers. This study enriches the GALDIT framework by incorporating two additional hydrogeological variables: hydraulic gradient (i) and pumping rate (P). This expansion produces seven distinct vulnerability maps (GALDIT, GAiDIT, GAiDIT-P, GALDIT-i, GALDIT-iP, GALDIT-P, GAPDIT). In the Urmia Plain, the traditional GALDIT index reveals vulnerability values ranging from 2 to 8.1, categorized into six classes from negligible to very high vulnerability. However, the modified indices, GAiDIT and GAiDIT-P, yield a three-class categorization, ranging from low to high vulnerability. The introduction of the "i" and "P" parameters in GALDIT-i and GALDIT-iP enhances the precision of vulnerability mapping, altering class distribution and intensifying vulnerability ratings. The eastern, central, and coastal areas of the Urmia Plain demonstrate high to very high vulnerability levels, in contrast to the lower vulnerability observed in the western regions. Both the GALDIT-P (r = 0.82) and GALDIT-iP (r = 0.81) indices show strong correlations with Cl concentration, thereby improving mapping accuracy over the traditional GALDIT index (r = 0.72). A sensitivity analysis highlights the critical influence of the "i" parameter, suggesting its weighting should be revised. Parameter recalibration serves to amplify the significance of "G," "L," "D," and "i" parameters, while diminishing others. The integration of multiple hydrogeological variables considerably enhances the precision of groundwater vulnerability assessments.


Assuntos
Água Subterrânea , Salinidade , Água Subterrânea/química , Irã (Geográfico) , Monitoramento Ambiental/métodos , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA