RESUMO
Protein arginine methyltransferases (PRMTs) are important post-translational modifying enzymes in eukaryotic proteins and regulate diverse pathways from gene transcription, RNA splicing, and signal transduction to metabolism. Increasing evidence supports that PRMTs exhibit the capacity to form higher-order oligomeric structures, but the structural basis of PRMT oligomerization and its functional consequence are elusive. Herein, we revealed for the first time different oligomeric structural forms of the predominant arginine methyltransferase PRMT1 using cryogenic electron microscopy, which included tetramer (dimer of dimers), hexamer (trimer of dimers), octamer (tetramer of dimers), decamer (pentamer of dimers), and also helical filaments. Through a host of biochemical assays, we showed that PRMT1 methyltransferase activity was substantially enhanced as a result of the high-ordered oligomerization. High-ordered oligomerization increased the catalytic turnover and the multi-methylation processivity of PRMT1. Presence of a catalytically-dead PRMT1 mutant also abled enhanced activity of wild-type PRMT1, pointing out a non-catalytic role of oligomerization. Structural modeling demonstrates that oligomerization enhances substrate retention at the PRMT1 surface through electrostatic force. Our studies offered key insights into PRMT1 oligomerization and established that oligomerization constitutes a novel molecular mechanism that positively regulates the enzymatic activity of PRMTs in biology.
RESUMO
PROTEIN ARGININE METHYLTRANSFERASES (PRMTs) catalyze arginine (R) methylation that is critical for transcriptional and post-transcriptional gene regulation. In Arabidopsis, PRMT5 that catalyzes symmetric R dimethylation is best characterized. PRMT5 mutants are late-flowering and show altered responses to environmental stress. Among PRMT5 targets are Arabidopsis thaliana GLYCINE RICH RNA BINDING PROTEIN 7 (AtGRP7) and AtGRP8 that promote the transition to flowering. AtGRP7 R141 has been shown to be modified by PRMT5. Here, we tested whether this symmetric dimethylation of R141 is important for AtGRP7's physiological role in flowering time control. We constructed AtGRP7 mutant variants with non-methylable R141 (R141A, R141K). Genomic clones containing these variants complemented the late-flowering phenotype of the grp7-1 mutant to the same extent as wild-type AtGRP7. Furthermore, overexpression of AtGRP7 R141A or R141K promoted flowering similar to overexpression of the wild-type protein. Thus, flowering time does not depend on R141 and its modification. However, germination experiments showed that R141 contributes to the activity of AtGRP7 in response to abiotic stress reactions mediated by abscisic acid during early development. Immunoprecipitation of AtGRP7-GFP in the prmt5 background revealed that antibodies against dimethylated arginine still recognized AtGRP7, suggesting that additional methyltransferases may be responsible for modification of AtGRP7.
RESUMO
Breast cancer (BC) is a disease highly associated with epigenetic modification, and arginine methylation is particularly important in its genetic regulation. However, the role of arginine methylation related lncRNAs in breast cancer has not been studied. First, we identified the related lncRNAs (from TCGA database) according to the differentially expressed genes related to arginine methylation in breast cancer. Then the lncRNAs related to protein arginine methylation were obtained by regression analysis, and the risk score model was constructed. Finally, the cell experiment and subcutaneous tumor model verified that the arginine methylation related lncRNA z68871.1 in the model had a significant effect on the proliferation and invasion of breast cancer cells. In conclusion, we successfully constructed an arginine methylation related lncRNA model, which has strong predictive ability. At the same time, this study provides an experimental basis for exploring the mechanism of arginine methylation in BC and helps to find new biomarkers of BC.
RESUMO
Arrhythmogenic cardiomyopathy (AC) is a common cause of sudden cardiac arrest and death in young adults. It can be induced by different types of mutations throughout the desmoplakin gene including the R2834H mutation in the extreme carboxyterminus tail of desmoplakin (DP CT) which remains structurally uncharacterized and poorly understood. Here, we have created 3D models of DP CT which show the structural effects of AC-inducing mutations as well as the implications of post-translational modifications (PTMs). Our results suggest that, in absence of PTMs, positively charged wildtype DP CT likely folds back onto negatively-charged plectin repeat 14 of nearby plakin repeat domain C (PRD C) contributing to the recruitment of intermediate filaments (IFs). When phosphorylated and methylated, negatively-charged wildtype DP CT would then fold back onto positively-charged plectin repeat 17 of PRD C, promoting the repulsion of intermediate filaments. However, by preventing PTMs, the R2834H mutation would lead to the formation of a cytoplasmic mutant desmoplakin with a constitutively positive DP CT tail that would be aberrantly recruited by cytoplasmic IFs instead of desmosomes, potentially weakening cell-cell contacts and promoting AC. Virtual screening of FDA-approved drug libraries identified several promising drug candidates for the treatment of cardiocutaneous diseases through drug repurposing.
Assuntos
Desmoplaquinas , Filamentos Intermediários , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Humanos , Filamentos Intermediários/metabolismo , Mutação , Ligação Proteica , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/genéticaRESUMO
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied however emerging studies now show MAC is a significant pathology independent from atherosclerosis. Further, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. While the contribution of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
RESUMO
Background: Diabetic nephropathy (DN) is a severe complication of diabetes influenced by arginine methylation. This study aimed to elucidate the role of protein arginine methylation-related genes (PRMT-RGs) in DN and identify potential biomarkers. Methods: Differentially expressed genes in two GEO datasets (GSE30122 and GSE104954) were integrated with 9 PRMT-RGs. Candidate genes were identified using WGCNA and differential expression analysis, then screened using support vector machine-recursive feature elimination and least absolute shrinkage and selection operator. Biomarkers were defined as genes with consistent differential expression across both datasets. Regulatory networks were constructed using the miRNet and Network Analyst databases. Gene set enrichment analysis was performed to identify the signaling pathways in which the biomarkers were enriched in DN. Different immune cells in DN were identified using immune infiltration analysis. Meanwhile, drug prediction and molecular docking identified potential DN therapies. Finally, qRT-PCR and immunohistochemistry validated two biomarkers in STZ-induced DN mice and DN patients. Results: Two biomarkers (FAM98A and FAM13B) of DN were identified in this study. The molecular regulatory network revealed that FAM98A and FAM13B were co-regulated by 6 microRNAs and 1 transcription factor and were enriched in signaling pathways. Immune infiltration and correlation analyses revealed that FAM98A and FAM13B were involved in developing DN along with PRMT-RGs and immune cells. The expression levels of Fam98a and Fam13b were significantly upregulated in the kidneys of DN mice revealed by qRT-PCR analysis. The expression levels of FAM98A were significantly upregulated in the kidneys of DN patients revealed by immunohistochemistry staining. Molecular docking showed that estradiol and rotenone exerted potential therapeutic effects on DN by targeting FAM98A. Conclusion: Comprehensive bioinformatics analysis revealed that FAM98A and FAM13B were potential DN biomarkers correlated with PRMT-RGs and immune cells. This study provided useful insights for elucidating the molecular mechanisms and developing targeted therapy for DN.
RESUMO
The African clawed frog (Xenopus laevis) endures prolonged periods of dehydration while estivating underground during the dry season. Epigenetic modifications play crucial roles in regulating gene expression in response to environmental changes. The elucidation of epigenetic changes relevant to survival could serve as a basis for further studies on organ preservation under extreme stress. The current study examined the relative protein levels of key enzymes involved in the arginine methylation of histones in the liver and kidney tissues of control versus dehydrated (35 ± 1%) X. laevis through immunoblotting. Protein arginine methyltransferases (PRMT) 4, 5, and 6 showed significant protein level decreases of 35 ± 3%, 71 ± 7%, and 25 ± 5%, respectively, in the liver tissues of the dehydrated frogs relative to controls. In contrast, PRMT7 exhibited an increase of 36 ± 4%. Similarly, the methylated histone markers H3R2m2a, H3R8m2a, and H3R8m2s were downregulated by 34 ± 11%, 15 ± 4%, and 42 ± 12%, respectively, in the livers of dehydrated frogs compared to controls. By contrast, the kidneys of dehydrated frogs showed an upregulation of histone markers. H3R2m2a, H3R8m2a, H3R8m2s, and H4R3m2a were significantly increased by 126 ± 12%, 112 ± 7%, 47 ± 13%, and 13 ± 3%, respectively. These changes can play vital roles in the metabolic reorganization of X. laevis during dehydration, and are likely to increase the chances of survival. In turn, the tissue-specific regulation of the histone arginine methylation mechanism suggests the importance of epigenetic regulation in the adaptation of X. laevis for whole-body dehydration.
Assuntos
Arginina , Histonas , Fígado , Xenopus laevis , Animais , Xenopus laevis/genética , Histonas/metabolismo , Histonas/genética , Metilação , Arginina/metabolismo , Fígado/metabolismo , Desidratação/genética , Desidratação/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Epigênese Genética , Rim/metabolismo , Regulação da Expressão Gênica , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismoRESUMO
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Assuntos
Arginina , Desenvolvimento Vegetal , Plantas , Processamento de Proteína Pós-Traducional , Metilação , Desenvolvimento Vegetal/genética , Plantas/metabolismo , Plantas/genética , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Estresse Fisiológico , Regulação da Expressão Gênica de PlantasRESUMO
Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.
Assuntos
Multimerização Proteica , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/química , Humanos , Processamento de Proteína Pós-Traducional , Animais , Metilação , Arginina/metabolismo , Arginina/química , Ligação ProteicaRESUMO
Lysine and arginine methylation is an important regulator of enzyme activity and transcription in eukaryotes. However, little is known about this covalent modification in bacteria. In this work, we investigated the role of methylation in bacteria. By reanalyzing a large phyloproteomics data set from 48 bacterial strains representing six phyla, we found that almost a quarter of the bacterial proteome is methylated. Many of these methylated proteins are conserved across diverse bacterial lineages, including those involved in central carbon metabolism and translation. Among the proteins with the most conserved methylation sites is ribosomal protein L11 (bL11). bL11 methylation has been a mystery for five decades, as the deletion of its methyltransferase PrmA causes no cell growth defects. Comparative proteomics analysis combined with inorganic polyphosphate and guanosine tetra/pentaphosphate assays of the ΔprmA mutant in Escherichia coli revealed that bL11 methylation is important for stringent response signaling. In the stationary phase, we found that the ΔprmA mutant has impaired guanosine tetra/pentaphosphate production. This leads to a reduction in inorganic polyphosphate levels, accumulation of RNA and ribosomal proteins, and an abnormal polysome profile. Overall, our investigation demonstrates that the evolutionarily conserved bL11 methylation is important for stringent response signaling and ribosomal activity regulation and turnover. IMPORTANCE: Protein methylation in bacteria was first identified over 60 years ago. Since then, its functional role has been identified for only a few proteins. To better understand the functional role of methylation in bacteria, we analyzed a large phyloproteomics data set encompassing 48 diverse bacteria. Our analysis revealed that ribosomal proteins are often methylated at conserved residues, suggesting that methylation of these sites may have a functional role in translation. Further analysis revealed that methylation of ribosomal protein L11 is important for stringent response signaling and ribosomal homeostasis.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ribossômicas , Bactérias/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Metilação , Proteoma/genética , Proteômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Escherichia coli/metabolismoRESUMO
Protein Arginine Methyltransferase 5 (PRMT5) regulates RNA splicing and transcription by symmetric dimethylation of arginine residues (Rme2s/SDMA) in many RNA binding proteins. However, the mechanism by which PRMT5 couples splicing to transcriptional output is unknown. Here, we demonstrate that a major function of PRMT5 activity is to promote chromatin escape of a novel, large class of mRNAs that we term Genomically Retained Incompletely Processed Polyadenylated Transcripts (GRIPPs). Using nascent and total transcriptomics, spike-in controlled fractionated cell transcriptomics, and total and fractionated cell proteomics, we show that PRMT5 inhibition and knockdown of the PRMT5 SNRP (Sm protein) adapter protein pICln (CLNS1A) -but not type I PRMT inhibition-leads to gross detention of mRNA, SNRPB, and SNRPD3 proteins on chromatin. Compared to most transcripts, these chromatin-trapped polyadenylated RNA transcripts have more introns, are spliced slower, and are enriched in detained introns. Using a combination of PRMT5 inhibition and inducible isogenic wildtype and arginine-mutant SNRPB, we show that arginine methylation of these snRNPs is critical for mediating their homeostatic chromatin and RNA interactions. Overall, we conclude that a major role for PRMT5 is in controlling transcript processing and splicing completion to promote chromatin escape and subsequent nuclear export.
RESUMO
Protein arginine methyltransferases (PRMTs) play critical roles in Plasmodium falciparum, a protozoan causing the deadliest form of malaria, making them potential targets for novel antimalarial drugs. Here, we screened 11 novel PRMT inhibitors against P. falciparum asexual growth and found that onametostat, an inhibitor for type II PRMTs, exhibited strong antimalarial activity with a half-maximal inhibitory concentration (IC50) value of 1.69 ± 0.04 µM. In vitro methyltransferase activities of purified PfPRMT5 were inhibited by onametostat, and a shift of IC50 to onametostat was found in the PfPRTM5 disruptant parasite line, indicating that PfPRTM5 is the primary target of onametostat. Consistent with the function of PfPRMT5 in mediating symmetric dimethylation of histone H3R2 (H3R2me2s) and in regulating invasion-related genes, onametostat treatment led to the reduction of H3R2me2s level in P. falciparum and caused the defects on the parasite's invasion of red blood cells. This study provides a starting point for identifying specific PRMT inhibitors with the potential to serve as novel antimalarial drugs.
Assuntos
Antimaláricos , Plasmodium falciparum , Proteína-Arginina N-Metiltransferases , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Antimaláricos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Eritrócitos/parasitologia , Eritrócitos/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Concentração Inibidora 50 , Histonas/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Inibidores Enzimáticos/farmacologiaRESUMO
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Assuntos
Neoplasias da Mama , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Metilação , Epigênese Genética , Animais , Regulação Neoplásica da Expressão GênicaRESUMO
Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs. Structural analysis and mutagenesis of SART3 show that aromatic residues lining a groove between two adjacent aromatic-rich half-a-tetratricopeptide (HAT) repeat domains are essential for SART3 to recognize and bind to SDMA-marked GAR motif peptides, as well as for the interaction between SART3 and the GAR-motif-containing proteins fibrillarin and coilin. Further, we show that the loss of this reader ability affects RNA splicing. Overall, our findings broaden the range of potential SDMA readers to include HAT domains.
Assuntos
Motivos de Aminoácidos , Arginina , Glicina , Arginina/metabolismo , Arginina/química , Humanos , Glicina/metabolismo , Glicina/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ligação Proteica , Splicing de RNA , Células HEK293 , Metilação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/químicaRESUMO
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
Assuntos
Multimerização Proteica , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Especificidade por Substrato , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , MetilaçãoRESUMO
Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
RESUMO
Coactivator-associated arginine methyltransferase 1 (CARM1) is significant as a key member of the PRMT family, crucial for regulating arginine methylation, and its association with colorectal cancer underscores its potential as a therapeutic target. Consequently, CARM1 inhibitors have emerged as potential therapeutic agents in cancer treatment and valuable chemical tools for cancer research. Despite steady progress in CARM1 inhibitor research, challenges persist in discovering effective, isoform-selective, cell-permeable, and in vivo-active CARM1 inhibitors for colorectal cancer. This review summarizes the research progress on CARM1 and its relationship with colorectal cancer, aiming to provide a theoretical basis for the radiotherapy of colorectal cancer.
Assuntos
Neoplasias Colorretais , Proteína-Arginina N-Metiltransferases , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologiaRESUMO
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferases , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Camundongos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Masculino , Metilação , Feminino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Proteoma/metabolismoRESUMO
Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
Assuntos
Arginina , Ciclopentanos , Oryza , Oxilipinas , Proteínas de Plantas , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Regulação da Expressão Gênica de PlantasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.