RESUMO
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Assuntos
Encéfalo , Células Endoteliais , Eucalyptus , Extratos Vegetais , Fumaça , Madeira , Humanos , Fumaça/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eucalyptus/química , Madeira/química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Relação Dose-Resposta a Droga , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Incêndios FlorestaisRESUMO
Type 1 diabetes (T1D) is an autoimmune disease with a strong chronic inflammatory component. One possible strategy for the treatment of T1D is to stimulate the regulatory arm of the immune response, i.e. to promote the function of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). Since both cell types have been shown to be responsive to the aryl hydrocarbon receptor (AHR) activation, we used a recently characterized member of a new class of fluorescent AHR ligands, AGT-5, to modulate streptozotocin-induced T1D in C57BL/6 mice. Prophylactic oral administration of AGT-5 reduced hyperglycemia and insulitis in these mice. Phenotypic and functional analysis of cells in the pancreatic infiltrates of AGT-5-treated mice (at the early phase of T1D) revealed a predominantly anti-inflammatory environment, as evidenced by the upregulation of tolDC and Treg frequency, while CD8+ cell, Th1 and Th17 cells were significantly reduced. Similarly, AGT-5 enhanced the proportion of Treg and tolDC in small intestine lamina propria and suppressed the activation status of antigen-presenting cells through down-regulation of co-stimulatory molecules CD40, CD80 and CD86. The expression levels of Cyp1a1, controlled by the AHR, were increased in CD4+, CD8+ and Treg, confirming the AHR-mediated effect of AGT-5 in these cells. Finally, AGT-5 stimulated the function of regulatory cells in the pancreatic islets and lamina propria by upregulating indoleamine 2,3-dioxigenase 1 (IDO1) in tolDC. These findings were supported by the abrogation of AGT-5-mediated in vitro effects on DC in the presence of IDO1 inhibitor. AGT-5 also increased the expression of CD39 or CD73 ATP-degrading ectoenzymes by Treg. The increase in Treg is further supported by the upregulated frequency of IL-2-producing type 3 innate lymphoid cells (ILC3) in the lamina propria. Anti-inflammatory effects of AGT-5 were also validated on human tonsil cells, where in vitro exposure to AGT-5 increased the proportion of immunosuppressive dendritic cells and ILC3. These results suggest that AGT-5, by stimulating AHR, may promote a general immunosuppressive environment in the pancreas and small intestine lamina propria at the early phase of disease, and thereby inhibit the severity of T1D in mice.
Assuntos
Células Dendríticas , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Linfócitos T Reguladores , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Diabetes Mellitus Experimental/imunologia , Ligantes , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Humanos , Ativação Linfocitária/imunologia , FemininoRESUMO
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Assuntos
Neoplasias da Mama , Obesidade , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Feminino , Obesidade/complicações , Fatores de Risco , Índice de Massa Corporal , PrognósticoRESUMO
This project reports on the use of a novel nanomembrane filtering technology to isolate and analyze the bioactivity of microplastic (MP)-containing debris from Lake Ontario water samples. Environmental MPs are a complex mixture of polymers and sorbed chemicals that are persistent and can exhibit a wide range of toxic effects. Since human exposure to MPs is unavoidable, it is necessary to characterize their bioactivity to assess potential health risks. This work seeks to quantify MP presence in the nearshore waters of Lake Ontario and begin to characterize the bioactivity of the filtrate containing MPs. We utilized silicon nitride (SiN) nanomembrane technology to isolate debris sized between 8 and 20 µm from lake water samples collected at various times and locations. MPs were identified with Nile red staining. Cell-based assays were conducted directly on the filtered debris to test for cell viability, aryl hydrocarbon receptor (AhR) activity, and interleukin 6 (IL-6) levels as a measure of proinflammatory response. All samples contained MPs. None of the isolated debris impacted cell viability. However, AhR activity and IL-6 levels varied over time. Additionally, no associations were observed between the amount of plastic and bioactivity. Observed differences in activity are likely due to variations in the physiochemical properties of debris between samples. Our results highlight the need for increased sampling to fully characterize the bioactivity of MPs in human cells and to elucidate the role that sample physiochemical and spatiotemporal properties play in this activity.
RESUMO
The oxygen-sensing pathway is a crucial regulatory circuit that defines cellular conditions and is extensively exploited in cancer development. Pathogenic mutations in the von Hippel-Lindau (VHL) tumour suppressor impair its role as a master regulator of hypoxia-inducible factors (HIFs), leading to constitutive HIF activation and uncontrolled angiogenesis, increasing the risk of developing clear cell renal cell carcinoma (ccRCC). HIF hyperactivation can sequester HIF-1ß, preventing the aryl hydrocarbon receptor (AHR) from correctly activating gene expression in response to endogenous and exogenous ligands such as TCDD (dioxins). In this study, we used protein-protein interaction networks and gene expression profiling to characterize the impact of VHL loss on AHR activity. Our findings reveal specific expression patterns of AHR interactors following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in ccRCC. We identified several AHR interactors significantly associated with poor survival rates in ccRCC patients. Notably, the upregulation of the androgen receptor (AR) and retinoblastoma-associated protein (RB1) by TCDD, coupled with their respective downregulation in ccRCC and association with poor survival rates, suggests novel therapeutic targets. The strategic activation of the AHR via selective AHR modulators (SAhRMs) could stimulate its anticancer activity, specifically targeting RB1 and AR to reduce cell cycle progression and metastasis formation in ccRCC. Our study provides comprehensive insights into the complex interplay between the AHR and HIF pathways in ccRCC pathogenesis, offering novel strategies for targeted therapeutic interventions.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Proteína Supressora de Tumor Von Hippel-Lindau , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dibenzodioxinas Policloradas/farmacologia , Dibenzodioxinas Policloradas/toxicidade , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transdução de Sinais , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases , Translocador Nuclear Receptor Aril HidrocarbonetoRESUMO
Tapinarof is a nonsteroidal, topical, aryl hydrocarbon receptor agonist. We evaluated the efficacy and safety of tapinarof cream 1% in Japanese patients aged ≥12 years with atopic dermatitis (AD) in two phase 3 trials, ZBB4-1 and ZBB4-2. ZBB4-1 (N = 216) consisted of an 8-week, double-blind, vehicle-controlled treatment period (period 1) and a 16-week extension treatment period (period 2). Patients were randomized 2:1 to tapinarof or vehicle in period 1; subsequently, all patients who enrolled in period 2 received tapinarof. ZBB4-2 (N = 291) was a 52-week, open-label, uncontrolled trial in which all patients received tapinarof. In period 1 of ZBB4-1, the proportion of patients who achieved an Investigator's Global Assessment (IGA) score of 0 (clear) or 1 (almost clear) with ≥2-grade improvement from baseline at week 8 (IGA treatment success, the primary end point) was 20.24% in the tapinarof group and 2.24% in the vehicle group (p = 0.0007). The proportion of patients with ≥75% improvement from baseline in Eczema Area and Severity Index (EASI) score at week 8 (EASI-75 response, the key secondary end point) was 40.3% in the tapinarof group and 4.3% in the vehicle group (p < 0.0001). In ZBB4-2, IGA treatment success rate was 28.1% at week 16, 32.3% at week 24, and 41.3% at week 52, and EASI-75 response rate was 53.3% at week 16, 63.7% at week 24, and 76.6% at week 52, indicating that efficacy responses improved over time and were maintained over 52 weeks. Across the two trials, most adverse events (AEs) were mild or moderate; common AEs included folliculitis, acne, and headache. In summary, tapinarof cream 1% was effective and generally safe for up to 52 weeks of treatment in Japanese patients with AD.
Assuntos
Dermatite Atópica , Creme para a Pele , Humanos , Dermatite Atópica/tratamento farmacológico , Masculino , Método Duplo-Cego , Feminino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Creme para a Pele/administração & dosagem , Creme para a Pele/efeitos adversos , Adulto Jovem , Japão , Índice de Gravidade de Doença , Adolescente , Administração Cutânea , Criança , Fenilpropionatos/administração & dosagem , Fenilpropionatos/efeitos adversos , Fenilpropionatos/uso terapêutico , População do Leste Asiático , Resorcinóis , EstilbenosRESUMO
The vast majority of gastric cancer (GC) cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GC, often associated with poor overall survival, has constantly increased in Western countries. Epidemiological studies have reported increased mortality from GC after occupational exposure to pro-carcinogens that are metabolically activated by cytochrome P450 enzymes through aryl hydrocarbon receptor (AhR). However, little is known about the role of AhR and environmental AhR ligands in diffuse GC as compared to intestinal GC in Western patients. In a cohort of 29, we demonstrated a significant increase in AhR protein and mRNA expression levels in GCs independently of their subtypes and clinical parameters. AhR and RHOA mRNA expression were correlated in diffuse GC. Further, our study aimed to characterize in GC how AhR and the AhR-related genes cytochrome P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) affect the mRNA expression of a panel of genes involved in cancer development and progression. In diffuse GC, CYP1A1 expression correlated with genes involved in IGF signaling, epithelial-mesenchymal transition (Vimentin), and migration (MMP2). Using the poorly differentiated KATO III epithelial cell line, two well-known AhR pollutant ligands, namely 2-3-7-8 tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP), strongly increased the expression of CYP1A1 and Interleukin1ß (IL1B), and to a lesser extend UGT1, NQO1, and AhR Repressor (AhRR). Moreover, the increased expression of CYP1B1 was seen in diffuse GC, and IHC staining indicated that CYP1B1 is mainly expressed in stromal cells. TCDD treatment increased CYP1B1 expression in KATO III cells, although at lower levels as compared to CYP1A1. In intestinal GC, CYP1B1 expression is inversely correlated with several cancer-related genes such as IDO1, a gene involved in the early steps of tryptophan metabolism that contributes to the endogenous AhR ligand kynurenine expression. Altogether, our data provide evidence for a major role of AhR in GC, as an environmental xenobiotic receptor, through different mechanisms and pathways in diffuse and intestinal GC. Our results support the continued efforts to clarify the identity of exogenous AhR ligands in diffuse GC in order to define new therapeutic strategies.
RESUMO
Background and aim Type 1 diabetes is an autoimmune disorder characterized by the destruction of pancreatic beta cells, leading to insulin deficiency and hyperglycemia. Regulatory T cells (Tregs), particularly type 1 regulatory T (Tr1) cells, play a crucial role in modulating autoimmune responses. Therefore, this study aimed to evaluate the frequency of Tr1 cells and their association with aryl hydrocarbon receptor (AHR) and interferon regulatory factor-4 (IRF4) gene expression levels in type 1 diabetes mellitus (T1DM) compared to the healthy controls. Method A case-control study design was used. The case group included patients diagnosed with T1DM, while the control group consisted of healthy individuals, matched for age and sex. Blood samples were collected, and peripheral blood mononuclear cells (PBMCs) were isolated. Serum interleukin 10 (IL-10) and interleukin 21 (IL-21) levels were measured using enzyme-linked immunosorbent assay (ELISA). The gene expression of AHR and IRF4 was analyzed using quantitative real-time polymerase chain reaction (qPCR), and Tr1 cell populations were determined using flow cytometry. Data were summarized with mean and standard error of the mean (SEM) for quantitative variables. Independent sample t-test, chi-square test, and the Mann-Whitney U test were used to compare groups. Statistical analyses were performed using SPSS version 25 (IBM SPSS Statistics, Armonk, NY), with significance levels set at p < 0.05. Figures were created using GraphPad Prism (GraphPad Software, San Diego, CA). Results A total of 45 cases were enrolled in the study, with 30 T1DM patients and 15 healthy controls. The mean IL-10 concentration was significantly higher in the patients (10.4 ± 1.1 pg/mL) compared to the healthy controls (5.1 ± 0.7 pg/mL), with a p-value of 0.001. There was no significant difference in IL-21 levels between the patients (76.1 ± 9.0 pg/mL) and healthy controls (88.2 ± 17.5 pg/mL), indicated by a p-value of 0.480. AHR gene expression was significantly lower in patients, with a p-value of 0.037. Although IRF4 gene expression was higher in patients, the difference was not statistically significant (p = 0.449). Tr1 cell frequency was significantly higher in T1DM patients (1.45% of cluster of differentiation 4+ {CD4+} T cells) compared to the healthy controls (0.40% of CD4+ T cells), with a p-value of 0.045. Conclusions The study demonstrated that T1DM is associated with higher IL-10 levels, decreased AHR gene expression, and a higher frequency of Tr1 cells. Policymakers should focus on developing targeted immunomodulatory therapies to address these immunological abnormalities. Healthcare providers should prioritize monitoring cytokine levels and gene expression in T1DM patients to tailor treatment plans effectively. Further research is needed to explore the therapeutic potential of modulating Tr1 cells and their related pathways in T1DM management.
RESUMO
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of ß-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Assuntos
Fígado , Camundongos Endogâmicos C57BL , Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Camundongos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Perfilação da Expressão GênicaRESUMO
SCOPE: Chalcones are widely present in most plants and have various health beneficial functions. This study investigates the suppressive effect of 13 natural and synthetic chalcones on transformation of aryl hydrocarbon receptor (AhR) induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC) in a cell-free system, Hepa-1c1c7 cells, and liver of ICR mice. METHODS AND RESULTS: In the cell-free system, cardamonin dose-dependently inhibits AhR transformation. Chalcones with substitution on 2' and/or 6' position is important for the suppressive effect, while the substitution on 4' position is negatively for the effect. Moreover, cardamonin and 2'-hydroxychalcone competitively inhibit the binding of [3H]-3-MC to the AhR. In Hepa-1c1c7 cells, cardamonin inhibits AhR transformation and expression of cytochrome P4501A1 (CYP1A1) in a dose-dependent manner through suppressing TCDD-induced phosphorylation of both AhR and AhR nuclear translocator, heterodimerization of them, and nuclear translocation of AhR. In the liver of mice, oral administered cardamonin also inhibits 3-MC-induced AhR translocation and expression of CYP1A1. CONCLUSION: Among used chalcones, a natural chalcone cardamonin competitively binds to AhR and suppresses its transformation. Thus, cardamonin is an effective food factor for suppression of the dioxin-caused biochemical alterations and toxicities.
Assuntos
Chalconas , Citocromo P-450 CYP1A1 , Fígado , Camundongos Endogâmicos ICR , Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Chalconas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Metilcolantreno , Masculino , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fosforilação/efeitos dos fármacos , Ligação CompetitivaRESUMO
PURPOSE: In this in vitro study, we investigated the effects of polychlorinated biphenyls (PCBs) on human thyrocytes, with a focus on the involvement of AhR, a key player in xenobiotic response, and the anti-oxidant Nrf-2/HO-1 pathway. METHODS: Primary cultured thyrocytes were exposed to the dioxin-like congeners PCB118 and PCB126 at 2.5 and 5 µM concentrations. mRNA expression was assessed by real-time PCR, and protein expression by Western Blot and ELISA, while protein quantification was assessed by densitometric analysis. RESULTS: In cultured thyrocytes, PCB118 and PCB126 induced a significant (P < 0.01) increase of mRNA and protein levels of the pro-inflammatory cytokines IL-1beta and IL-6, while reducing those of thyroglobulin (TG) and NIS (p < 0.05), indicating down-regulation of these thyroid-specific genes in PCB-induced inflammation. ROS production also increased (p < 0.001). mRNA levels of AhR and the downstream molecules cytochrome P4501A, Nrf-2/HO-1 increased (p < 0.001), as well as related protein levels (p < 0.01), suggesting the activation of AhR and Nrf-2 pathways in response to PCBs exposure. AhR silencing decreased AhR-related gene expression and restored NIS and TG expression, while reducing inflammatory cytokines and oxidative stress markers (p < 0.05). CONCLUSIONS: Dioxin-like PCBs (PCB118 and PCB126) may promote inflammation and oxidative stress in thyrocytes, impairing the expression of genes that are key players of thyroid function. These effects can be partially attributed to the activation of the AhR and Nrf-2 pathways. These data may contribute to explain the mechanisms underlying thyroid toxicity of PCBs, highlighting the potential role of these pollutants as a trigger of autoimmune thyroid inflammation and damage.
RESUMO
Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/ß-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.
Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Ovariectomia , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Triptofano/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Indóis/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Osteoporose/metabolismo , Ácidos Indolacéticos/metabolismo , Osteoporose Pós-Menopausa/metabolismoRESUMO
Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.
Assuntos
Carbazóis , Receptores de Hidrocarboneto Arílico , Pele , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/metabolismo , Carbazóis/farmacologia , Luz , Animais , Visão Ocular/fisiologia , Transdução de SinaisRESUMO
Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.
Assuntos
Receptores de Hidrocarboneto Arílico , Linfócitos T Reguladores , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Humanos , Peixe-Zebra , Corantes Fluorescentes/química , Ligantes , Camundongos Endogâmicos C57BL , Indóis/farmacologia , Indóis/química , Diferenciação Celular/efeitos dos fármacosRESUMO
The etiology of major depressive disorder (MDD) remains poorly understood. Our previous studies suggest a role for the aryl hydrocarbon receptor (AhR) in depression. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant, with a high AhR binding affinity, and an established benchmark for assessing AhR activity. Therefore, this study examined the effect of TCDD on depression-like behaviors. Female mice were fed standard chow or a high-fat diet (HFD) for 11 weeks, and their weight was recorded. Subsequently, they were tested for baseline sucrose preference and splash test grooming. Then, TCDD (0.1⯵g/kg/day) or vehicle was administered orally for 28 days, and mice were examined for their sucrose preference and performances in the splash test, forced swim test (FST), and Morris water maze (MWM) task. TCDD significantly decreased sucrose preference, increased FST immobility time, and decreased groom time in chow-fed mice. HFD itself significantly reduced sucrose preference. However, TCDD significantly increased FST immobility time and decreased groom time in HFD-fed mice. A small decrease in bodyweight was observed only at the fourth week of daily TCDD administration in chow-fed mice, and no significant effects of TCDD on bodyweights were observed in HFD-fed mice. TCDD did not have a significant effect on spatial learning in the MWM. Thus, this study demonstrated that TCDD induces a depression-like state, and the effects were not due to gross lethal toxicity. This study further suggests that more studies should examine a possible role for AhR and AhR-active environmental pollutants in precipitating or worsening MDD.
Assuntos
Depressão , Dibenzodioxinas Policloradas , Animais , Dibenzodioxinas Policloradas/toxicidade , Feminino , Depressão/induzido quimicamente , Depressão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Natação/psicologia , Receptores de Hidrocarboneto Arílico/metabolismo , Preferências Alimentares/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fenótipo , Asseio Animal/efeitos dos fármacosRESUMO
Massive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of ß-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-ß-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.
Assuntos
Artrite Experimental , Fatores de Transcrição Forkhead , Ácidos Indolacéticos , Lisina Acetiltransferase 5 , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Ubiquitinação , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ratos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Lisina Acetiltransferase 5/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Humanos , Masculino , Diferenciação Celular , Modelos Animais de DoençasRESUMO
The roles of aryl hydrocarbon receptor (AhR), AhR-nuclear translocator (ARNT), and AhR repressor (AhRR) genes in the elevation of cord blood IgE (CbIgE) remained unclear. Our aims were to determine the polymorphisms of AhR, ARNT, and AhRR genes, cord blood AhR (CBAhR) level, and susceptibility to elevation of CbIgE. 206 infant-mother pairs with CbIgE>=0.35 IU/ml and 421 randomly selected controls recruited from our previous study. Genotyping was determined using TaqMan assays. Statistical analysis showed AhR rs2066853 (GG vs. AA+AG: adjusted OR (AOR)=1.5, 95%CI=1.10-2.31 and AOR=1.60, 95%CI=1.06-2.43, respectively) and the combination of AhR rs2066853 and maternal total IgE (mtIgE)>=100 IU/ml were significantly correlated with CbIgE>=0.35 IU/ml or CbIgE>=0.5 IU/ml. CBAhR in a random subsample and CbIgE levels were significantly higher in infants with rs2066853GG genotype. We suggest that infant AhR rs2066853 and their interactions with mtIgE>=100 IU/ml significantly correlate with elevated CbIgE, but AhRR and ARNT polymorphisms do not.
RESUMO
The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.
Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , LigantesRESUMO
The enzyme tryptophan 2,3-dioxygenase (TDO2) has been implicated in the dysregulation across a variety of human cancers. Despite this association, the implications of TDO2 in the progression of bladder cancer have eluded thorough understanding. In this study, we demonstrate that TDO2 expression is notably elevated in bladder cancer tissues and serves as an unfavorable prognostic factor for overall survival. Through a series of biological functional assays, we have determined that TDO2 essentially enhances cell proliferation, metastatic potential, and imparts a decreased sensitivity to the chemotherapeutic agent cisplatin. Our mechanistic investigations reveal that TDO2 augments aryl hydrocarbon receptor (AhR) signaling pathways and subsequently upregulates the expression of SPARC and FILIP1L. Importantly, we have identified a positive correlation between TDO2 levels and the basal/squamous subtype of bladder cancer, and we provide evidence to suggest that TDO2 expression is modulated by the tumor suppressors RB1 and TP53. From a therapeutic perspective, we demonstrate that the targeted inhibition of TDO2 with the molecular inhibitor 680C91 markedly attenuates tumor growth and metastasis while concurrently enhancing the efficacy of cisplatin. These findings open a new therapeutic avenue for the management of bladder cancer.
Assuntos
Triptofano Oxigenase , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteonectina/genéticaRESUMO
The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.