RESUMO
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. The present review explores the latest advancements in targeted therapies for GBM, emphasizing the critical role of the blood-brain barrier (BBB), blood-brain-tumor barrier, tumor microenvironment, and genetic mutations in influencing treatment outcomes. The impact of the key hallmarks of GBM, for example, chemoresistance, hypoxia, and the presence of glioma stem cells on the disease progression and multidrug resistance are discussed in detail. The major focus is on the innovative strategies aimed at overcoming these challenges, such as the use of monoclonal antibodies, small-molecule inhibitors, and novel drug delivery systems designed to enhance drug penetration across the BBB. Additionally, the potential of immunotherapy, specifically immune checkpoint inhibitors and vaccine-based approaches, to improve patient prognosis was explored. Recent clinical trials and preclinical studies are reviewed to provide a comprehensive overview of the current landscape and future prospects in GBM treatment. The integration of advanced computational models and personalized medicine approaches is also considered, aiming to tailor therapies to individual patient profiles for better efficacy. Overall, while significant progress has been made in understanding and targeting the complex biology of GBM, continued research and clinical innovation are imperative to develop more effective and sustainable therapeutic options for patients battling this formidable disease.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Barreira Hematoencefálica/metabolismo , Terapia de Alvo Molecular , Animais , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Imunoterapia/métodos , Sistemas de Liberação de MedicamentosRESUMO
Radiation therapy plays a vital role in the management of primary spinal tumors in adults. However, due to the rarity of these tumor types, the literature on optimal treatment indications and radiation doses is limited. Many treatment recommendations are extrapolated from their cranial counterparts, where more data are available. Despite the absence of prospective data, numerous retrospective studies have provided valuable insights to guide treatment decisions until more comprehensive data become available. This review provides an overview of the most relevant literature, with a specific focus on spinal gliomas, ependymomas, and meningiomas, in the context of the role of radiation therapy.
RESUMO
Tumors of astrocytic origin represent one of the most frequent entities among the overall rare group of spinal cord gliomas. Initial clinical symptoms are often unspecific, and sensorimotor signs localizing to the spinal cord occur with progressing tumor growth. On MRI, a hyperintense intrinsic spinal cord signal on T2-weighted sequences with varying degrees of contrast enhancement raises suspicion for an infiltrative neoplasm. Blood and CSF analysis serves to exclude an infectious process, nutritional deficits, or metabolic disorders. When such other differential diagnoses have been ruled out, a neuropathological tissue-based analysis is warranted to confirm the diagnosis of a spinal cord astrocytoma and guide further patient management. As such, maximal safe resection forms the basis of any treatment. Meticulous preoperative planning is necessary to weigh the potential improvement in survival against the risk of functional deterioration. Intraoperative neuromonitoring and ultrasound may aid in achieving a more extensive resection. Depending on the assigned WHO tumor grade spanning from grade 1 to grade 4, the use of radiotherapy and chemotherapy might be indicated but also wait-and-scan approaches appear reasonable in tumors of lower grade. Close imaging follow-up is necessary given that recurrence inevitably occurs in astrocytomas of grades 2-4. Prognosis is so far dictated by tumor grade and histopathological findings, but also by age and clinical performance of the patient. Targeted therapies resting upon an in-depth tissue analysis are emerging in recurrent tumors, but no prospective study is available so far given the rarity of spinal cord astrocytomas.
RESUMO
High-grade astrocytoma with piloid features is a newly defined brain tumor that requires DNA methylation profiling for diagnosis. Imaging features specific to this tumor have only recently been described in the radiological literature. We highlight the case of a 34-year-old man who presented with a 4-week history of headaches and light-headedness. Postresection, pathological analysis identified the tumor based on DNA methylation profiling, and the patient was started on adjuvant chemotherapy with Temozolomide. T2-weighted imaging showed a well-circumscribed cerebellar mass, which correlated with the pathology-reported glial tumor cells being elongated and piloid. T1-postgadolinium imaging showed heterogeneous enhancement of linear serpiginous areas, which correlated with regions of high microvascular density and vessels that showed thickening and hyalinization. Diffusion-weighted imaging and apparent diffusion coefficient mapping did not show significant diffusion restriction. Rosenthal fibres were absent. Given the specific imaging-pathology correlation, this report contributes imaging features associated with this novel diagnostic entity.
RESUMO
BACKGROUND: High-grade astrocytoma with piloid features (HGAP) is a novel condition introduced in the 2021 World Health Organization classification. Given that it has been recently classified, reports clarifying its clinical features or diagnostic criteria are lacking, especially in cases of atypical presentation. Herein, the authors present a rare case of HGAP with repeated symptomatic hemorrhages. OBSERVATIONS: A woman in her 20s presented with an acute headache and vertigo. Computed tomography and magnetic resonance imaging revealed a 2.5 × 2.8 × 2.3-cm hemorrhagic cerebellar mass with calcifications. After moderate improvement of her symptoms, she developed recurrent hemorrhage, and the tumor size increased (3.0 × 3.6 × 4.0 cm) 18 days later, necessitating resection. Pathological and molecular analyses confirmed the diagnosis of HGAP with an FGFR1-TACC1 fusion, MTAP/CDKN2A/B deletion, and SETD2 rearrangement. Radiologically, the presence of calcification and cystic components and the absence of perilesional edema were atypical features of previously reported HGAP. LESSONS: Although recurrent symptomatic intracranial hemorrhages are rare in HGAP, enhancing lesions on magnetic resonance imaging suggest the need for resection to obtain tissue for molecular diagnosis and guide adjuvant treatment strategies. https://thejns.org/doi/10.3171/CASE24395.
RESUMO
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Metilação de DNA , Epigênese Genética , Isocitrato Desidrogenase , Mutação , Humanos , Astrocitoma/genética , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Mutação/genética , Epigênese Genética/genética , Feminino , Masculino , Desenvolvimento Embrionário/genética , Pessoa de Meia-Idade , Adulto , Gradação de TumoresRESUMO
Scheie syndrome is a mild variant of mucopolysaccharidosis type I (MPS I), a rare group of lysosomal storage diseases that affect multiple organ systems. It is rarely associated with neoplasia. To the best of our knowledge, only a single case of mucopolysaccharidosis associated with a brain tumor has been reported, and it was nearly three decades ago. We present the case of a 10-year-old female with Scheie syndrome associated with a brain tumor. Physical and laboratory findings were suggestive of Scheie syndrome. A skeletal survey also revealed a spectrum of dysostosis multiplex supporting MPS. Children with MPS can have rapidly enlarging head sizes due to hydrocephalus, but our patient had several red flags that demanded further evaluation. A brain MRI revealed a mass in the fourth ventricle and a biopsy of the mass revealed pilocytic astrocytoma grade 1. Intraventricular pilocytic astrocytoma itself is a rare occurrence, accounting for only 4%-15.6 % of all pilocytic astrocytomas. Altered mucopolysaccharide metabolism can be involved in tumor pathogenesis, but the exact mechanism is unknown. Mucopolysaccharidoses, being a group of complicated disorders, are difficult to manage, and many symptoms can be missed in children due to intellectual disability. This case highlights the importance of suspecting brain tumors in children with mucopolysaccharidoses who present with signs and symptoms of increased intracranial pressure. Prompt diagnosis and management can save the child from dire neurological consequences.
RESUMO
Novel cancer biomarkers discoveries are driven by the application of omics technologies. The vast quantity of highly dimensional data necessitates the implementation of feature selection. The mathematical basis of different selection methods varies considerably, which may influence subsequent inferences. In the study, feature selection and classification methods were employed to identify six signature gene sets of grade 2 and 3 astrocytoma samples from the Rembrandt repository. Subsequently, the impact of these variables on classification and further discovery of biological patterns was analysed. Principal component analysis (PCA), uniform manifold approximation and projection (UMAP), and hierarchical clustering revealed that the data set (10,096 genes) exhibited a high degree of noise, feature redundancy, and lack of distinct patterns. The application of feature selection methods resulted in a reduction in the number of genes to between 28 and 128. Notably, no single gene was selected by all of the methods tested. Selection led to an increase in classification accuracy and noise reduction. Significant differences in the Gene Ontology terms were discovered, with only 13 terms overlapping. One selection method did not result in any enriched terms. KEGG pathway analysis revealed only one pathway in common (cell cycle), while the two methods did not yield any enriched pathways. The results demonstrated a significant difference in outcomes when classification-type algorithms were utilised in comparison to mixed types (selection and classification). This may result in the inadvertent omission of biological phenomena, while simultaneously achieving enhanced classification outcomes.
RESUMO
Subependymal giant cell astrocytoma (SEGA) is most often found in patients with TSC (Tuberous Sclerosis Complex). Although it has been classified as a benign tumor, it may create a serious medical problem leading to grave consequences, including young patient demise. Surgery and chemotherapy belong to the gold standard of treatment. A broader pharmacological approach involves the ever-growing number of rapalogs and ATP-competitive inhibitors, as well as compounds targeting other kinases, such as dual PI3K/mTOR inhibitors and CK2 kinase inhibitors. Novel approaches may utilize noncoding RNA-based therapeutics and are extensively investigated to this end. The purpose of our review was to characterize SEGA and discuss the latest trends in the diagnosis and therapy of this disease.
RESUMO
The primary treatment for gliomas typically involves tumor resection followed by adjuvant radiotherapy, with increasing emphasis on chemotherapy and molecularly targeted drugs. This study aimed to review and summarize the literature on the systemic therapy of malignant gliomas. Chemotherapy may be considered in grades 2 and 3 gliomas, especially when mutations in 1p19q-codeletion are detected. The beneficial impact of adding chemotherapy to radiotherapy (PCV: procarbazine, lomustine, vincristine) has also been demonstrated. In grade 4 glioblastoma multiforme (GBM), wild-type isocitrate dehydrogenase (IDH) status showed the best treatment outcomes with temozolomide (TMZ) in patients with O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. Prolonging adjuvant TMZ therapy improves treatment outcomes compared to the standard 6-cycle adjuvant therapy. Bevacizumab (BEV) monotherapy can improve progression-free survival and maintain the initial quality of life. Despite advancements in GBM treatment, outcomes remain unsatisfactory, with a median survival of 14-16 months. Further research is still needed regarding the systemic treatment of central nervous system gliomas.
RESUMO
The World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification 5th edition (2021) integrates both molecular and histopathological criteria for diagnosing glial tumors. This updated classification highlights significant differences between pediatric and adult gliomas in terms of molecular characteristics and prognostic implications. The 5th edition comprises a new category of pediatric-type diffuse low-grade glioma (PDLGG) and pediatric-type diffuse high-grade glioma (PDHGG), classified mainly based on genetic alterations and histopathological features. We reviewed the microscopy, diagnostic molecular pathology, and prognosis of various tumors under the categories PDLGG and PDHGG. The review also addresses the need for clarification concerning overlapping diagnostic features. PDLGG are characterized by diffuse growth, low-grade morphology, and MYB/MYBL1(MYB Proto-Oncogene Like 1) gene fusion or mitogen-activated protein kinase (MAPK) pathway alterations. In contrast, PDHGG is described by diffuse growth, high-grade morphology, and increased mitosis and often shows alterations of histone gene resulting in epigenetic alterations, which contrasts with common isocitrate dehydrogenase (IDH) mutation and epidermal growth factor receptor (EGFR) amplification seen in adult-type high-grade glioma.
Assuntos
Glioma , Proto-Oncogene Mas , Organização Mundial da Saúde , Humanos , Glioma/classificação , Glioma/genética , Glioma/patologia , Criança , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/classificação , Proteínas Proto-Oncogênicas c-myb/genética , Gradação de Tumores , Mutação/genéticaRESUMO
Astrocytomas are relatively common primary brain tumours of humans and companion animals. In dogs, they represent approximately 17-28% of primary central nervous system tumours. However, extracranial metastasis is extremely rare. This case report describes a grade IV astrocytoma (glioblastoma) in the cerebrum of a young Cane Corso dog with pulmonary metastases. The diagnosis was obtained via histopathological morphology and immunophenotyping, which showed strong positivity for glial fibrillary acidic protein, vimentin and connexin-43. The glioblastoma in this Cane Corso had epithelioid morphology with histological features of malignancy including high mitotic count, microvascular proliferation, serpentine necrosis and subventricular zone involvement. Epithelioid glioblastoma is a rare subtype that has only relatively recently been formally acknowledged in human medicine and it can also pose a diagnostic challenge in veterinary medicine.
RESUMO
Over the past decade, our understanding of the molecular drivers of pediatric low-grade glioma (PLGG) has expanded dramatically. These tumors are predominantly driven by RAS/MAPK pathway activating alterations (fusions and point mutations), most frequently in BRAF, FGFR1, and NF1. Furthermore, additional second hits in tumor suppressor genes (TP53, ATRX, CDKN2A) can portend more aggressive behaviour. Accordingly, comprehensive molecular profiling-specifically genetic sequencing, often plus copy number profiling-has become critical for guiding the diagnosis and management of PLGG. In this review, we discuss the most important genetic alterations that inform on classification and prognosis of PLGG, highlighting their diagnostic and therapeutic relevance.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Biomarcadores Tumorais/genéticaRESUMO
Pilocytic astrocytoma (PA) is classified as a Grade I benign neuroglial tumor. The extent of surgical resection is a critical factor influencing the prognosis for patients with PA. In prior researches of PA, the extent of surgical resection is generally categorized into GTR, STR and biopsy. In some researches on brain tumor surgeries, the extent of resection also includes GTL. There is no existing research specifically comparing the efficacy of GTR versus GTL in PA treatment. In this study, the data we used are from the SEER database. We categorized the extent of resection into GTL, GTR, STL, STR, biopsy, and no surgery based on SEER classification of surgical procedures, to investigate the impact of extent of resection on PA patient survival. A multivariate logistic regression model was utilized to acquire odds ratios (OR) for different extent of resection. Survival outcomes across different extent of resection (GTL, GTR, STL, STR, biopsy, no surgery) were assessed using Kaplan-Meier survival curve analysis, with curve comparisons conducted via log-rank tests. The impact of various risk factors on survival was assessed using the Cox proportional hazards model. The hazard ratio (HR) was employed to quantify the influence of one or more factors on overall survival throughout the follow-up period. Multivariate Cox analysis revealed that age, tumor location, extent of resection, as well as the application of radiotherapy and chemotherapy, all significantly impacted prognosis. Compared to GTL, GTR did not significantly increase the risk of mortality (HR 1.17; 95% CI 0.73-1.86, p = 0.5). Furthermore, there was no statistically significant difference between the Kaplan-Meier survival curves of the two groups (p = 0.18). We employed propensity score matching (PSM) to balance the differences in baseline characteristics of patients receiving chemotherapy or radiotherapy. A total of 4429 patients were included in this study. Age, diagnosis period, race, tumor size, and tumor location as influential on the extent of resection. Age, tumor location, extent of resection, and application of radiotherapy and chemotherapy influenced the survival of PA patients. The Kaplan-Meier survival curves revealed that the long-term survival rate for GTR is slightly higher than that for GTL. The PSM analysis revealed that the application of radiotherapy and chemotherapy was associated with the reduction of overall survival in PA patients. In conclusion, there was no significant difference in survival between GTR and GTL, so GTR with less damage was preferred. The application of radiotherapy and chemotherapy can reduce overall survival of patients with PA.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Astrocitoma/mortalidade , Astrocitoma/cirurgia , Astrocitoma/patologia , Feminino , Masculino , Adulto , Criança , Adolescente , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Pré-Escolar , Adulto Jovem , Taxa de Sobrevida , Programa de SEER , Pessoa de Meia-Idade , Estimativa de Kaplan-Meier , Lactente , Prognóstico , Modelos de Riscos Proporcionais , Resultado do Tratamento , IdosoRESUMO
PURPOSE OF REVIEW: A number of molecular characteristics are essential for accurate diagnosis and prognostication in glioma. RECENT FINDINGS: The 2021 WHO classification of brain tumors and recent Food and Drug Administration (FDA) pathology agnostic drug approvals highlight the importance of molecular testing in the management of glioma. For diffuse gliomas, it is important to identify IDH mutations, given the favorable clinical behavior and potential for using FDA approved IDH inhibitors in the near future. MGMT promoter methylation testing is the most established molecular marker for response to temozolomide in IDH wild-type glioblastoma and in turn impacts overall survival. Moreover, identification of certain mutations and molecular markers, such as BRAF V600E, hypermutation or elevated tumor-mutational burden and NTRK fusions allow for the use of FDA approved agents that are tumor-agnostic. Finally, molecular testing opens options for clinical trials that are essential for diseases with limited treatment options like gliomas.
RESUMO
PURPOSE: Mutations in the Isocitrate Dehydrogenase (IDH) genes, IDH1 or IDH2, define a group of adult diffuse gliomas associated with a younger age at diagnosis and better prognosis than IDH wild-type glioblastoma. Within IDH mutant gliomas, a small fraction of astrocytic tumors present with grade 4 histologic features and poor prognosis. In molecular studies, homozygous deletion of CDKN2A/B is independently predictive of poor prognosis and short survival. As a consequence, 2021 WHO classification now also recognizes this molecular feature, CDKN2A/B deletion, as sufficient for classifying an astrocytoma as IDH-mutant, WHO Grade 4, regardless of histological grading. Here, we investigate outcomes of patients with WHO Grade 4 IDH-mutant astrocytoma both with and without CDKN2A/B deletion, to compare these groups and evaluate clinical and radiographic factors that contribute to survival. METHODS: We retrospectively identified 79 patients with IDH-mutant astrocytoma with CDKN2A/B deletion detected at initial diagnosis across five international institutions as well as a comparison group of 51 patients with IDH-mutant, astrocytoma, histologically Grade 4 without detectable CDKN2A/B deletion. We assembled clinical and radiographic features for all patients. RESULTS: We find that CDKN2A/B deletion was associated with significantly worse overall survival (OS; p = 0.0004) and progression-free survival (PFS; p = 0.0026), with median OS of 5.0 years and PFS of 3.0 years, compared to 10.1 and 5.0 years for tumors with a grade 4 designation based only on histologic criteria. Multivariate analysis confirmed CDKN2A/B deletion as a strong negative prognosticator for both OS (HR = 3.51, p < 0.0001) and PFS (HR = 2.35, p = 0.00095). In addition, in tumors with CDKN2A/B deletion, preoperative contrast enhancement is a significant predictor of worse OS (HR 2.19, 95% CI 1.22-3.93, p = 0.0090) and PFS (HR = 1.74, 95% CI = 1.02-2.97, p = 0.0420). CONCLUSIONS: These findings underscore the severe prognostic impact of CDKN2A/B deletion in IDH-mutant astrocytomas and highlight the need for further refinement of tumor prognostic categorization. Our results provide a key benchmark of baseline patient outcomes for therapeutic trials, underscoring the importance of CDKN2A/B status assessment, in addition to histologic grading, in clinical trial design and therapeutic decision-making for IDH-mutant astrocytoma patients.
RESUMO
Target population These recommendations apply to adult patients with recurrent WHO grade 2 infiltrative diffuse glioma (oligodendroglioma, astrocytoma).Questions and Recommendations:Imaging Q1: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, do advanced imaging techniques using magnetic resonance spectroscopy, perfusion weighted imaging, diffusion weighted imaging or PET provide superior assessment of tumor recurrence and histologic progression compared to standard MRI neuroimaging?Recommendation Level III: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, advanced imaging techniques using magnetic resonance spectroscopy, perfusion weighted imaging, diffusion weighted imaging or PET are suggested for identification of tumor recurrence or histologic progression.Pathology Q1: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, is molecular testing for IDH-1, IDH-2, and TP53 Mutations and MGMT promotor methylation mutation warranted for predicting survival and formulating treatment recommendations?Recommendation Level III: It is suggested that IDH mutation status be determined for diagnostic purposes. TP53 mutations occur early in WHO grade 2 diffuse glioma pathogenesis, remain stable, and are not suggested as a marker of predisposition to malignant transformation at recurrence or other measures of prognosis. Assessment of MGMT status is suggested as an adjunct to assessing prognosis. Assessment of CDK2NA status is suggested since this is associated with malignant progression of WHO grade 2 diffuse gliomas.Q2: In adult patients with suspected recurrence of histologically proven WHO Grade 2 diffuse glioma, is testing of proliferation indices (MIB-1 and/or BUdR) warranted for predicting survival and formulating treatment recommendations?Recommendation Level III: It is suggested that proliferative indices (MIB-1 or BUdR) be measured in WHO grade 2 diffuse glioma as higher proliferation indices are associated with increased likelihood of recurrence and shorter progression free and overall survival.Chemotherapy Q1: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, does addition of temozolomide (TMZ), other cytotoxic agents or targeted agents to their treatment regimen improve PFS and/or OS?Recommendation Level III: Temozolomide is suggested in the therapy of recurrent WHO grade 2 diffuse glioma as it may improve clinical symptoms. PCV is suggested in the therapy of WHO grade 2 diffuse glioma at recurrence as it may improve clinical symptoms with the strongest evidence being for oligodendrogliomas. TMZ is suggested as the initial choice for recurrent WHO grade 2 diffuse glioma. Carboplatin is not suggested as there is no significant benefit from carboplatin as single agent therapy for recurrent WHO grade 2 diffuse gliomas. There is insufficient evidence to make any recommendations regarding other agents in the management of recurrent WHO grade 2 diffuse glioma.Radiotherapy Q1: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, does addition of radiotherapy to treatment regimen improve PFS and/or OS?Recommendation Level III: Radiation is suggested at recurrence if there was no previous radiation treatment. Q2: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma after previous radiotherapy, does addition of re-irradiation or proton therapy to the treatment regimen improve PFS and/or OS?Recommendation Level III: It is suggested that re-irradiation be considered in the setting of WHO grade 2 diffuse glioma recurrence as it may provide benefit in PFS and OS.Surgery Q1: In adult patients with suspected recurrence of histologically proven WHO grade 2 diffuse glioma, does surgical resection improve PFS and/or OS?. There is insufficient evidence to make any new specific recommendations regarding the value of surgery or extent of resection in relationship to survival for recurrent WHO grade 2 diffuse glioma.
RESUMO
OBJECTIVES: The aim of this study was to explore the factors that could predict long term clinical outcomes in SA. METHODS: A retrospective study was conducted wherein SA patients undergoing surgical resection with a minimum follow up of 12 months were included in this study. Modified Mccormick Scale (MMS) was utilized to record the neurological status of the patients both preoperatively and at last follow up. Outcomes were assessed as: long term neurological status, that is final MMS grade and neurological deterioration, defined as increase in MMS score as compared to preoperative MMS score. Survival analysis was performed using the kaplan meier curves. RESULTS: 71 patients were included in this study with mean age of 33.07years. At a mean follow up of 57 months, preoperative MMS was the single independent predictor for moderate-severe neurological deficit (MMS III to V) on multivariate analysis (OR: 30.2, p < 0.001) and had an outstanding AUC of 0.91. Six patients had neurological deterioration at long term follow up. Absence of spasticity (p = 0.028), thoracic-thoracolumbar tumors (p = 0.006), low MMS score (p = 0.01) and hypointense T1 weighted MRI (p = 0.009) were significant predictors of long term neurological deterioration. The median overall survival was 48 months and was significantly higher in low grade tumors (p < 0.001). CONCLUSION: The study highlights the efficacy of clinical features as a predictor of long term functional outcomes in SA patients. Role of spasticity as a prognostic factor was explored for the first time in this study.