Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Glia ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092466

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.

2.
Adv Sci (Weinh) ; : e2406742, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120009

RESUMO

Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.

3.
Int Immunopharmacol ; 141: 112940, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154532

RESUMO

Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aß accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aß and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.

4.
Adv Neurobiol ; 39: 213-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190077

RESUMO

Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.


Assuntos
Astrócitos , Neurônios , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Astrócitos/metabolismo , Animais , Humanos , Neurônios/metabolismo , Gliose/metabolismo , Gliose/patologia , Regeneração Nervosa/fisiologia , Medula Espinal/metabolismo , Comunicação Celular/fisiologia
5.
Adv Neurobiol ; 39: 233-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190078

RESUMO

The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.


Assuntos
Astrócitos , Plasticidade Neuronal , Neurônios , Acidente Vascular Cerebral , Astrócitos/metabolismo , Humanos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Ácido Glutâmico/metabolismo , Sobrevivência Celular , Gliose/metabolismo
6.
Adv Neurobiol ; 39: 345-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190082

RESUMO

Besides its two defining misfolded proteinopathies-Aß plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.


Assuntos
Doença de Alzheimer , Astrócitos , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Gliose/metabolismo , Gliose/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Comunicação Celular/fisiologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais
7.
Glia ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145525

RESUMO

Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.

8.
Neurochem Int ; 179: 105830, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128625

RESUMO

Discrete components of tea possess multitude of health advantages. Escalating evidence advocate a consequential association between habitual tea consumption and a subsided risk of Parkinson's disease (PD). l-theanine is a non-protein amino acid inherent in tea plants, which exhibits structural resemblance with glutamate, the copious excitatory neurotransmitter in brain. Neuromodulatory effects of l-theanine are evident from its competency in traversing the blood brain barrier, promoting a sense of calmness beyond enervation, and enhancing cognition and attention. Despite the multifarious reports on antioxidant properties of l-theanine and its potential to regulate brain neurotransmitter levels, it is obligatory to understand its exact contribution in ameliorating the pathophysiology of PD. In this study, MPTP-induced mouse model was established and PD-like symptoms were developed in test animals where an increasing dosage of l-theanine (5, 25, 50, 100 and 250 mg/kg) was intraperitoneally administered for 23 days. 50 and 100 mg/kg dosage of l-theanine alleviated motor impairment and specific non-motor symptoms in Parkinsonian mice. The dosage of 100 mg/kg of l-theanine also improved striatal dopamine and serotonin level and tyrosine-hydroxylase positive cell count in the substantia nigra. Most crucial finding of the study is the proficiency of l-theanine to diminish astroglial injury as well as nitric oxide synthesis, which suggests its possible credential to prevent neurodegeneration by virtue of its anti-inflammatory attribute.

9.
Neurosci Bull ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080102

RESUMO

In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.

10.
J Comp Neurol ; 532(7): e25660, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039998

RESUMO

Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.


Assuntos
Comportamento Animal , Doença de Lafora , Camundongos Knockout , Ubiquitina-Proteína Ligases , Animais , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Comportamento Animal/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
11.
Neurosci Lett ; 837: 137899, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39019146

RESUMO

Astrocyte-elevated gene-1 (AEG-1/MTDH/LYRIC) has garnered signficant attention in cancer research, yet, its role in inflammation-associated astrogliosis remains underexplored. This study aims to elucidate the effects of AEG-1 on reactive astrogliosis, including proliferation, migration, and glutamate uptake in primary astrocytes derived from rats. We first confirmed the effect of AEG-1 on these parameters. Subsequently, we investigated whether AEG-1 plays a role in the process of pro-inflammation factors such as tumor necrosis factor-alpha (TNF-α) induced astrogliosis. Our findings revealed that AEG-1-lentivirus infection led to hypertrophic cell bodies and enhanced expression of astrogliosis markers, including glial fibrillary acidic protein (GFAP) and vimentin. Additionally, AEG-1 was found to upregulate the mRNA and protein expression levels of EAAT2, a major glutamate transporter in the brain predominantly expressed by astrocytes and responsible for 90% of glutamate clearance. Furthermore, TNF-α was shown to promote astrogliosis, as well as astrocyte proliferation and migration, by upregulating AEG-1 expression through the NF-κB pathway. Collectively, these results suggest a potential role for AEG-1 in inflammation-related astrogliosis.


Assuntos
Astrócitos , Gliose , Proteínas de Membrana , NF-kappa B , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa , Regulação para Cima , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo
12.
J Neurovirol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943022

RESUMO

Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.

13.
Nucl Med Mol Imaging ; 58(4): 177-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932762

RESUMO

Astrocytes primarily maintain physiological brain homeostasis. However, under various pathological conditions, they can undergo morphological, transcriptomic, and functional transformations, collectively referred to as reactive astrogliosis. Recent studies have accumulated lines of evidence that reactive astrogliosis plays a crucial role in the pathology of Alzheimer's disease (AD). In particular, monoamine oxidase B, a mitochondrial enzyme mainly expressed in astrocytes, significantly contributes to neuronal dysfunction and neurodegeneration in AD brains. Moreover, it has been reported that reactive astrogliosis precedes other pathological hallmarks such as amyloid-beta plaque deposition and tau tangle formation in AD. Due to the early onset and profound impact of reactive astrocytes on pathology, there have been extensive efforts in the past decade to visualize these cells in the brains of AD patients using positron emission tomography (PET) imaging. In this review, we summarize the recent studies regarding the essential pathological importance of reactive astrocytes in AD and their application as a target for PET imaging.

14.
Front Rehabil Sci ; 5: 1375561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939055

RESUMO

Background: Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods: Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results: Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion: Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.

15.
ACS Biomater Sci Eng ; 10(7): 4279-4296, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870483

RESUMO

After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.


Assuntos
Resinas Acrílicas , Astrócitos , Mecanotransdução Celular , Astrócitos/metabolismo , Animais , Resinas Acrílicas/química , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Géis/química , Proliferação de Células , Ratos Sprague-Dawley
16.
Brain Res ; 1842: 149104, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945469

RESUMO

Prolactin has been recognized as neuroprotective hormone against various types of neuronal damage. This study was aimed to determine if prolactin protects against streptozotocin injury. A series of experiments were performed to determine neuronal survival by counting total neurons in medial hippocampus cortex and cerebellum. Astrogliosis was determined by immunofluorescence assays using GFAP, and behavioral improvement by prolactin after neuronal damage was determined by open-field and light-dark box tests. Results demonstrated that prolactin induced significant neuronal survival in both the hippocampus and cortex, but not in the cerebellum. No increase in astrogliosis was identified, but a significant reduction in anxiety levels was observed. Overall data indicate that prolactin may protect against a complex form of cell damage including oxidant stress and metabolic disruption by streptozotocin. Prolactin may be helpful strategy in the treatment of neuronal damage in neurological diseases.


Assuntos
Hipocampo , Neurônios , Fármacos Neuroprotetores , Prolactina , Estreptozocina , Animais , Prolactina/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Neuroproteção/fisiologia , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Gliose/metabolismo , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
17.
J Cereb Blood Flow Metab ; : 271678X241254679, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735059

RESUMO

This paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [18F](S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression. Fourteen elderly subjects (8 control, 5 mild cognitive impairment, 1 Alzheimer's disease) with amyloid ([11C]PiB) and tau ([18F]flortaucipir) imaging assessments underwent dynamic [18F]SMBT-1 PET imaging with arterial input function determination. [18F]SMBT-1 showed high brain uptake and a retention pattern consistent with the known MAO-B distribution. A two-tissue compartment (2TC) model where the K1/k2 ratio was fixed to a whole brain value best described [18F]SMBT-1 kinetics. The 2TC total volume of distribution (VT) was well identified and highly correlated (r2∼0.8) with post-mortem MAO-B indices. Cerebellar grey matter (CGM) showed the lowest mean VT of any region and is considered the optimal pseudo-reference region. Simplified analysis methods including reference tissue models, non-compartmental models, and standard uptake value ratios (SUVR) agreed with 2TC outcomes (r2 > 0.9) but with varying bias. We found the CGM-normalized 70-90 min SUVR to be highly correlated (r2 = 0.93) with the 2TC distribution volume ratio (DVR) with acceptable bias (∼10%), representing a practical alternative for [18F]SMBT-1 analyses.

18.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38715318

RESUMO

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Assuntos
Astrócitos , Flavanonas , Flavonoides , Lipopolissacarídeos , Neurônios , Extratos Vegetais , Scutellaria baicalensis , Ácido gama-Aminobutírico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Flavanonas/farmacologia , Scutellaria baicalensis/química , Camundongos , Ácido gama-Aminobutírico/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Inibição Neural/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
19.
Front Neurosci ; 18: 1389556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817909

RESUMO

Introduction: Available evidence suggests that as we age, our brain and immune system undergo changes that increase our susceptibility to injury, inflammation, and neurodegeneration. Since a significant portion of the potential patients treated with a microelectrode-based implant may be older, it is important to understand the recording performance of such devices in an aged population. Methods: We studied the chronic recording performance and the foreign body response (FBR) to a clinically used microelectrode array implanted in the cortex of 18-month-old Sprague Dawley rats. Results and discussion: To the best of our knowledge, this is the first preclinical study of its type in the older mammalian brain. Here, we show that single-unit recording performance was initially robust then gradually declined over a 12-week period, similar to what has been previously reported using younger adult rats and in clinical trials. In addition, we show that FBR biomarker distribution was similar to what has been previously described for younger adult rats implanted with multi-shank recording arrays in the motor cortex. Using a quantitative immunohistochemcal approach, we observed that the extent of astrogliosis and tissue loss near the recording zone was inversely related to recording performance. A comparison of recording performance with a younger cohort supports the notion that aging, in and of itself, is not a limiting factor for the clinical use of penetrating microelectrode recording arrays for the treatment of certain CNS disorders.

20.
Ecotoxicol Environ Saf ; 279: 116480, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772146

RESUMO

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.


Assuntos
Astrócitos , Proliferação de Células , Via de Sinalização Hippo , Toxinas Marinhas , Microcistinas , Transdução de Sinais , Microcistinas/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores ErbB/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA