Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.400
Filtrar
1.
Cereb Cortex ; 34(11)2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39503245

RESUMO

Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.


Assuntos
Estimulação Acústica , Córtex Auditivo , Percepção Auditiva , Neurônios , Animais , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Percepção Auditiva/fisiologia , Camundongos , Vocalização Animal/fisiologia , Masculino , Feminino , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Vias Auditivas/fisiologia
2.
Sci Rep ; 14(1): 25314, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455606

RESUMO

The mammalian cerebral cortex is composed of a rich diversity of cell types. Sensory cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions for perception, learning, and memory. The auditory cortex (AC) has been most extensively studied for its experience-dependent effects, including for perceptual learning and associative memory. Here, we used single-nucleus RNA sequencing (snRNA-seq) in the AC of the adult rat to investigate the breadth of transcriptionally diverse cell types that likely support the role of AC in experience-dependent functions. A variety of unique excitatory and inhibitory neuron subtypes were identified that harbor unique transcriptional profiles of genes with putative relevance for the adaptive neuroplasticity of cortical microcircuits. In addition, we report for the first time a diversity of astrocytes in AC that may represent functionally unique subtypes, including those that could integrate experience-dependent adult neuroplasticity at cortical synapses. Together, these results pave the way for building models of how cortical neurons work in concert with astrocytes to fulfill dynamic and experience-dependent cognitive functions.


Assuntos
Astrócitos , Córtex Auditivo , Neurônios , Análise de Sequência de RNA , Animais , Córtex Auditivo/fisiologia , Córtex Auditivo/citologia , Córtex Auditivo/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Astrócitos/metabolismo , Astrócitos/fisiologia , Plasticidade Neuronal/genética , Masculino , Análise de Célula Única
3.
Int Arch Otorhinolaryngol ; 28(4): e561-e567, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39464353

RESUMO

Introduction Mismatch negativity (MMN) represents a negative component of event-related potentials, which is mentioned by guidelines as an important tool to provide measurable data regarding the functionality of the auditory system in acoustic processing. However, the literature still lacks reliable data that can support the clinical use of this potential in the complementary diagnosis of central auditory processing (CAP) disorder (CAPD). Objectives To analyze whether MMN assessment might be associated with the CAP behavioral test battery, as well as to assess the effects of auditory ability deficits on MMN responses in the pediatric population. Methods In total, 45 age-matched children participated in the study. They were submitted to the CAP behavior assessment and to MMN. The children were tested with a combination of speech contrast consisting of acoustic syllables [da] versus [ta], governed by the oddball paradigm. Results Mismatch negativity did not show a direct association with a single test but with the combination of the four tests used as a behavioral test battery to identify CAPD. The results also indicated that the auditory ability deficits influenced the measurement of MMN latency ( p = 0.003*), but not the amplitude ( p = 0.857) or the area ( p = 0.577). Conclusion Mismatch negativity was shown to be statistically associated with the battery of tests used to identify deficits in auditory abilities in the studied sample rather than with a single behavioral test. The deficits in auditory abilities were observed in the MMN latency. Mismatch negativity can be used to assess children with CAPD.

4.
Int Arch Otorhinolaryngol ; 28(4): e579-e586, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39464361

RESUMO

Introduction The use of functional near-infrared light spectroscopy (fNIRS) may be applied to study cortical responses in children and could offer insight into auditory and speech perception during the early stages of life. Some literature suggests that babies are already able to identify familiar voices at birth, and fNIRS is a non-invasive technique that can be used to study this population. Objective To characterize the cortical responses of infants during their first trimester of life to infant-directed speech using near-infrared light spectroscopy and to verify whether there is a difference in responses when infant-directed speech is performed by their mother compared with an unknown person. Methods Twenty-three children between 0 and 3 months, healthy, without risk indicators for hearing loss, and with results considered normal in the audiological evaluation were tested with near-infrared spectroscopy using infant-directed speech as an auditory stimulus produced by their own mother and by an unknown source. Results Bilateral cortical activation was observed. The responses were present in the temporal, frontal, and parietal regions. Regarding the familiarity aspect, no significant difference was observed for the mother's voice compared with an unknown voice. Conclusion Infant-directed speech has prosodic characteristics capable of activating several cortical regions in the infant's first trimester of life, especially the temporal region. The familiarity effect needs to be better defined for this type of stimulus during this period.

5.
bioRxiv ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39386565

RESUMO

Sound structures such as phonemes and words have highly variable durations. Thus, there is a fundamental difference between integrating across absolute time (e.g., 100 ms) vs. sound structure (e.g., phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. To answer this question, we rescaled the duration of all speech structures using time stretching/compression and measured integration windows in the human auditory cortex using a new experimental/computational method applied to spatiotemporally precise intracranial recordings. We observed significantly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.

6.
BMC Neurosci ; 25(1): 52, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420272

RESUMO

Most scientists agree that subjective tinnitus is the pathological result of an interaction of damage to the peripheral auditory system and central neuroplastic adaptations. Here we investigate such tinnitus related adaptations in the primary auditory cortex (AC) 7 and 13 days after noise trauma induction of tinnitus by quantifying the density of the extracellular matrix (ECM) in the AC of Mongolian gerbils (Meriones unguiculatus). The ECM density has been shown to be relevant for neuroplastic processes and synaptic stability within the cortex. We utilized a mild monaural acoustic noise trauma in overall 22 gerbils to induce tinnitus and a sham exposure in 16 control (C) animals. Tinnitus was assessed by a behavioral response paradigm. Animals were separated for a presence (T) or absence (NT) of a tinnitus percept by a behavioral task. The ECM density 7 and 13 days after trauma was quantified using immunofluorescence luminance of Wisteria floribunda lectin-fluoresceine-5-isothiocyanate (WFA-FITC) on histological slices of the primary AC, relative to the non-auditory brainstem as a reference area. At both timepoints, we found that the WFA-FITC luminance of the AC of NT animals was not significantly different from that of C animals. However, we found a significant increase of luminance in T animals' ACs compared to NT or C animals' cortices. This effect was found exclusively on the AC side contralateral to the trauma ear. These results point to a hemisphere specific process of stabilization of synaptic connections in primary AC, which may be involved in the chronic manifestation of tinnitus.


Assuntos
Córtex Auditivo , Matriz Extracelular , Gerbillinae , Zumbido , Animais , Córtex Auditivo/patologia , Córtex Auditivo/fisiopatologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Zumbido/patologia , Zumbido/fisiopatologia , Masculino , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Estimulação Acústica , Plasticidade Neuronal/fisiologia
7.
Neuromodulation ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396357

RESUMO

OBJECTIVES: Transcranial direct current stimulation (tDCS) has been studied as a potential treatment for many brain conditions. Although tDCS is well tolerated, continued study of perceptual and cognitive side effects is warranted, given the complexity of functional brain organization. This study tests the feasibility of brief tablet-based tasks to assess auditory and cognitive side effects in a recently reported pilot study of auditory-cortex tDCS in chronic tinnitus and attempts to confirm that this untested multisession tDCS protocol does not worsen hearing. MATERIALS AND METHODS: Participants with chronic tinnitus completed two hearing tasks (pure-tone thresholds, Words In Noise [WIN]) and two cognitive tasks (Flanker, Dimension Change Card Sort) from the NIH Toolbox (2024 Toolbox Assessments, Inc, Lincolnwood, IL). Participants were randomized to active or sham 4×1 silver/silver-chloride tDCS of left auditory cortex (n = 10/group). Tasks were completed immediately before and after the first tDCS session, and after the fifth/final tDCS session. Statistics included linear mixed-effects models for change in task performance over time. RESULTS: Before tDCS, performance on both auditory tasks was highly correlated with clinical audiometry, supporting the external validity of these measures (r2 > 0.89 for all). Although overall auditory task performance did not change after active or sham tDCS, detection of right-ear WIN stimuli modestly improved after five active tDCS sessions (t34 = -2.07, p = 0.05). On cognitive tasks, reaction times (RTs) were quicker after sham tDCS, reflecting expected practice effects (eg, t88 = 3.22, p = 0.002 after five sessions on the Flanker task). However, RTs did not improve over repeated sessions in the active group, suggesting that tDCS interfered with learning these practice effects. CONCLUSIONS: Repeated sessions of auditory-cortex tDCS do not seem to adversely affect hearing or cognition but may modestly improve hearing in noise and interfere with some types of motor learning. Low-burden cognitive/perceptual test batteries could be a powerful way to identify adverse effects and new treatment targets in brain stimulation research.

8.
Neurosci Lett ; 843: 138025, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39461704

RESUMO

Previous studies have revealed that auditory processing is modulated during the planning phase immediately prior to speech onset. To date, the functional relevance of this pre-speech auditory modulation (PSAM) remains unknown. Here, we investigated whether PSAM reflects neuronal processes that are associated with preparing auditory cortex for optimized feedback monitoring as reflected in online speech corrections. Combining electroencephalographic PSAM data from a previous data set with new acoustic measures of the same participants' speech, we asked whether individual speakers' extent of PSAM is correlated with the implementation of within-vowel articulatory adjustments during /b/-vowel-/d/ word productions. Online articulatory adjustments were quantified as the extent of change in inter-trial formant variability from vowel onset to vowel midpoint (a phenomenon known as centering). This approach allowed us to also consider inter-trial variability in formant production, and its possible relation to PSAM, at vowel onset and midpoint separately. Results showed that inter-trial formant variability was significantly smaller at vowel midpoint than at vowel onset. PSAM was not significantly correlated with this amount of change in variability as an index of within-vowel adjustments. Surprisingly, PSAM was negatively correlated with inter-trial formant variability not only in the middle but also at the very onset of the vowels. Thus, speakers with more PSAM produced formants that were already less variable at vowel onset. Findings suggest that PSAM may reflect processes that influence speech acoustics as early as vowel onset and, thus, that are directly involved in motor command preparation (feedforward control) rather than output monitoring (feedback control).

9.
Ann N Y Acad Sci ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39476072

RESUMO

Brain imaging studies have reported that the neural deficits of congenital amusia in non-tonal language speakers are mainly in the connectivity between the auditory cortex and the inferior frontal gyrus (IFG) in the right hemisphere. However, the relationship between the functional connectivity (FC) in these regions and the music perception ability of amusia in tonal language speakers remains unclear. In this study, we investigated the FC characteristics of amusia in Mandarin speakers in resting-state functional magnetic resonance imaging data by voxel-wise connectivity analyses with seeds in left and right Heschl's gyri (HG) and region of interest (ROI)-to-ROI connectivity analyses. Our findings indicate increased connectivity between right HG and bilateral posterior superior temporal gyrus, as determined by voxel-wise connectivity analyses in amusia. Conversely, reduced connectivity was observed between bilateral HG and bilateral IFG (orbital part) as assessed through ROI-to-ROI connectivity analyses in amusia when compared to controls. Moreover, the music perception scores of amusia in Mandarin speakers were associated with diminished connectivity between the left HG and the right IFG. This study furnishes direct evidence for the link between music perception deficits and the aberrant frontotemporal connectivity of congenital amusia in tonal language speakers in resting state.

10.
Front Aging Neurosci ; 16: 1470919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286459

RESUMO

Objective: Tinnitus may be associated with various brain changes. However, the degenerative changes in patients with tinnitus have not been extensively investigated. We aimed to evaluate degenerative, structural, and functional brain changes in patients with mild cognitive impairment (MCI) who also suffer from tinnitus. Materials and methods: This study included participants aged 60 to 80 years with MCI and a hearing level better than 40 dB. The participants were classified into two groups: MCI with tinnitus (MCI-T) and MCI without tinnitus (MCI-NT). All patients underwent Tinnitus Handicap Inventory (THI), 3 T brain MRI, F18-florapronol PET, and F18-FDG PET. Results: The MCI-T group exhibited higher ß-amyloid deposition in the superior temporal gyrus, temporal pole, and middle temporal gyrus compared to the MCI-NT group (p < 0.05 for all). Additionally, the MCI-T group showed increased metabolism in the inferior frontal gyrus, insula, and anterior cingulate cortex (ACC) (p < 0.005 for all). The THI score was strongly correlated with increased volume in the insula, ACC, superior frontal gyrus, supplementary motor area, white matter near the hippocampus, and precentral gyrus (p < 0.05 for all). Moreover, the MCI-T group demonstrated higher metabolic activity in the default mode network (DMN) and lower activity in the executive control network (ECN) (p < 0.05 for all). In the MCI-T group, the posterior DMN was positively correlated with the visual network and negatively with the ECN, whereas in the MCI-NT group, it correlated positively with the ECN. Conclusion: The MCI-T group exhibited greater ß-amyloid accumulation in the auditory cortex and more extensive changes across various brain networks compared with the MCI-NT group, potentially leading to diverse clinical symptoms such as dementia with semantic deficits or depression. Tinnitus in MCI patients may serve as a biomarker for degenerative changes in the temporal lobe and alterations in brain network dynamics.

11.
Hear Res ; 452: 109107, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39241554

RESUMO

The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world; an extensively studied phenomenon commonly referred to as predictive coding. Predictive coding posits that the brain is continuously extracting regularities from the environment to generate predictions. These predictions are then used to supress neuronal responses to redundant information, filtering those inputs, which then automatically enhances the remaining, unexpected inputs. We have recently described the ability of auditory neurons to generate predictions about expected sensory inputs by detecting their absence in an oddball paradigm using omitted tones as deviants. Here, we studied the responses of individual neurons to omitted tones by presenting individual sequences of repetitive pure tones, using both random and periodic omissions, presented at both fast and slow rates in the inferior colliculus and auditory cortex neurons of anesthetized rats. Our goal was to determine whether feature-specific dependence of these predictions exists. Results showed that omitted tones could be detected at both high (8 Hz) and slow repetition rates (2 Hz), with detection being more robust at the non-lemniscal auditory pathway.


Assuntos
Estimulação Acústica , Córtex Auditivo , Vias Auditivas , Colículos Inferiores , Animais , Córtex Auditivo/fisiologia , Colículos Inferiores/fisiologia , Vias Auditivas/fisiologia , Masculino , Percepção Auditiva/fisiologia , Ratos , Anestesia , Neurônios/fisiologia , Ratos Sprague-Dawley , Fatores de Tempo , Potenciais Evocados Auditivos
12.
Front Neurosci ; 18: 1448365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328422

RESUMO

In the auditory cortex, synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), plays crucial roles in information processing and adaptation to the auditory environment. Previous rodent studies have shown lifelong cortical map plasticity, even beyond the critical period of development. While thalamocortical synapses exhibit LTD during the critical period, little is known about LTD in the cortico-cortical connections of the adult mouse auditory cortex. Here, we investigated the transient response dynamics of LTD in layers 2-5 of the mouse auditory cortex following tetanic stimulation (TS) to layer 4. To characterize LTD properties, we developed a recording protocol to monitor activity levels at multiple sites, including those more than 0.45 mm from the TS site. This allowed us to distinguish LTD-induced reductions in neural excitability from other types, including neural activity depletion. Our findings revealed that LTD induced in layer 4 persisted for over 40-min post-TS, indicating robust cortico-cortical LTD. Using electrophysiological data and a modified synaptic model, we identified key receptors involved in synaptic plasticity and their effects on response dynamics, proposing a method for studying LTD in the mature mouse auditory cortex. Particularly, by employing a simple dynamical model, we analyzed and discussed the involvement of key receptors during the transient period of LTD. This study expands our understanding of synaptic plasticity in the mature mouse auditory cortex beyond the critical period, potentially informing future treatments for hearing disorders.

13.
Elife ; 132024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255194

RESUMO

Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity.


The brain lowers its response to inputs we generate ourselves, such as moving or speaking. Essentially, our brain 'knows' what will happen next when we carry out these actions, and therefore does not need to react as strongly as it would to unexpected events. This is why we cannot tickle ourselves, and why the brain does not react as much to our own voice as it does to someone else's. Quieting down the brain's response also allows us to focus on things that are new or important without getting distracted by our own movements or sounds. Studies in non-human primates showed that neurons in the auditory cortex (the region of the brain responsible for processing sound) displayed suppressed levels of activity when the animals made sounds. Interestingly, when the primates heard an altered version of their own voice, many of these same neurons became more active. But it was unclear whether this also happens in humans. To investigate, Ozker et al. used a technique called electrocorticography to record neural activity in different regions of the human brain while participants spoke. The results showed that most areas of the brain involved in auditory processing showed suppressed activity when individuals were speaking. However, when people heard an altered version of their own voice which had an unexpected delay, those same areas displayed increased activity. In addition, Ozker et al. found that the higher the level of suppression in the auditory cortex, the more sensitive these areas were to changes in a person's speech. These findings suggest that suppressing the brain's response to self-generated speech may help in detecting errors during speech production. Speech deficits are common in various neurological disorders, such as stuttering, Parkinson's disease, and aphasia. Ozker et al. hypothesize that these deficits may arise because individuals fail to suppress activity in auditory regions of the brain, causing a struggle when detecting and correcting errors in their own speech. However, further experiments are needed to test this theory.


Assuntos
Retroalimentação Sensorial , Fala , Humanos , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Fala/fisiologia , Adulto Jovem , Córtex Auditivo/fisiologia , Lobo Temporal/fisiologia , Percepção da Fala/fisiologia , Eletroencefalografia , Eletrocorticografia , Estimulação Acústica
14.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270676

RESUMO

Cortical processing of auditory information can be affected by interspecies differences as well as brain states. Here we compare multifeature spectro-temporal receptive fields (STRFs) and associated input/output functions or nonlinearities (NLs) of neurons in primary auditory cortex (AC) of four mammalian species. Single-unit recordings were performed in awake animals (female squirrel monkeys, female, and male mice) and anesthetized animals (female squirrel monkeys, rats, and cats). Neuronal responses were modeled as consisting of two STRFs and their associated NLs. The NLs for the STRF with the highest information content show a broad distribution between linear and quadratic forms. In awake animals, we find a higher percentage of quadratic-like NLs as opposed to more linear NLs in anesthetized animals. Moderate sex differences of the shape of NLs were observed between male and female unanesthetized mice. This indicates that the core AC possesses a rich variety of potential computations, particularly in awake animals, suggesting that multiple computational algorithms are at play to enable the auditory system's robust recognition of auditory events.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Feminino , Masculino , Gatos , Camundongos , Ratos , Estimulação Acústica/métodos , Neurônios/fisiologia , Saimiri , Percepção Auditiva/fisiologia , Especificidade da Espécie , Modelos Neurológicos , Potenciais de Ação/fisiologia , Camundongos Endogâmicos C57BL
15.
Neuroscience ; 560: 143-157, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39284433

RESUMO

Noise-induced hearing loss (NIHL) studies have focused on the lemniscal auditory pathway, but little is known about how NIHL impacts different cortical regions. Here we compared response recovery trajectories in the auditory and frontal cortices (AC, FC) of mice following NIHL. We recorded EEG responses from awake mice (male n = 15, female n = 14) before and following NIHL (longitudinal design) to quantify event related potentials and gap-in-noise temporal processing. Hearing loss was verified by measuring the auditory brainstem response (ABR) before and at 1-, 10-, 23-, and 45-days after noise-exposure. Resting EEG, event related potentials (ERP) and auditory steady state responses (ASSR) were recorded at the same time-points after NIHL. The inter-trial phase coherence (ITPC) of the ASSR was measured to quantify the ability of AC and FC to synchronize responses to short gaps embedded in noise. Despite the absence of click-evoked ABRs up to 90 dB SPL and up to 45-days post-exposure, ERPs from the AC and FC showed full recovery in âˆ¼ 50 % of the mice to pre-NIHL levels in both AC and FC. The ASSR ITPC was reduced following NIHL in AC and FC in all the mice on day 1 after NIHL. The AC showed full recovery of ITPC over 45-days. Despite ERP amplitude recovery, the FC does not show recovery of ASSR ITPC. These results indicate post-NIHL plasticity with similar response amplitude recovery across AC and FC, but cortical region-specific trajectories in temporal processing recovery.


Assuntos
Córtex Auditivo , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído , Animais , Feminino , Masculino , Perda Auditiva Provocada por Ruído/fisiopatologia , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Camundongos , Lobo Frontal/fisiopatologia , Percepção Auditiva/fisiologia , Modelos Animais de Doenças , Ruído
16.
Prog Neurobiol ; 241: 102661, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39303758

RESUMO

Listening in complex sound environments requires rapid segregation of different sound sources, e.g., having a conversation with multiple speakers or other environmental sounds. Efficient processing requires fast encoding of inputs to adapt to target sounds and identify relevant information from past experiences. This adaptation process represents an early phase of implicit learning of the sound statistics to form auditory memory. The auditory cortex (ACtx) plays a crucial role in this implicit learning process, but the underlying circuits are unknown. In awake mice, we recorded neuronal responses in different ACtx subfields using in vivo 2-photon imaging of excitatory and inhibitory (parvalbumin; PV) neurons. We used a paradigm adapted from human studies that induced rapid implicit learning from passively presented complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex 'Target' sound randomly re-occurred within a stream of other random complex sounds. All ACtx subregions contained distinct groups of cells specifically responsive to complex acoustic sequences, indicating that even thalamocortical input layers (A1 L4) respond to complex sounds. Subgroups of excitatory and inhibitory cells in all subfields showed decreased responses for re-occurring Target sounds, indicating that ACtx is highly involved in the early implicit learning phase. At the population level, activity was more decorrelated to Target sounds independent of the duration of frozen token, subregions, and cell type. These findings suggest that ACtx and its input layers contribute to the early phase of auditory memory for complex sounds, suggesting a parallel strategy across ACtx areas and between excitatory and inhibitory neurons.


Assuntos
Estimulação Acústica , Córtex Auditivo , Percepção Auditiva , Neurônios , Córtex Auditivo/fisiologia , Animais , Neurônios/fisiologia , Percepção Auditiva/fisiologia , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL
17.
Proc Natl Acad Sci U S A ; 121(40): e2405615121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312661

RESUMO

Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons. We find that intratelencephalic (IT) neurons in both layers 2/3 and 5 as well as corticocollicular neurons in layer 5 all demonstrate deviance detection; however, we find a specific enhancement of deviance detection in corticocollicular neurons that arises from ZnT3-dependent synaptic zinc in layer 2/3 IT neurons. Genetic deletion of ZnT3 from layer 2/3 IT neurons removes the enhancing effects of synaptic zinc on corticocollicular neuron deviance detection and results in poorer acuity of detecting deviant sounds by behaving mice.


Assuntos
Córtex Auditivo , Neurônios , Sinapses , Zinco , Animais , Zinco/metabolismo , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiologia , Camundongos , Sinapses/metabolismo , Sinapses/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Estimulação Acústica , Camundongos Knockout , Percepção Auditiva/fisiologia , Camundongos Endogâmicos C57BL , Masculino
18.
eNeuro ; 11(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39266327

RESUMO

Two-photon calcium imaging allows for the activity readout of large populations of neurons at single cell resolution in living organisms, yielding new insights into how the brain processes information. Holographic optogenetics allows us to trigger activity of this population directly, raising the possibility of injecting information into a living brain. Optogenetic triggering of activity that mimics "natural" information, however, requires identification of stimulation targets based on real-time analysis of the functional network. We have developed NeuroART (Neuronal Analysis in Real Time), software that provides real-time readout of neuronal activity integrated with downstream analysis of correlations and synchrony and of sensory metadata. On the example of auditory stimuli, we demonstrate real-time inference of the contribution of each neuron in the field of view to sensory information processing. To avoid the limitations of microscope hardware and enable collaboration of multiple research groups, NeuroART taps into microscope data streams without the need for modification of microscope control software and is compatible with a wide range of microscope platforms. NeuroART also integrates the capability to drive a spatial light modulator (SLM) for holographic photostimulation of optimal stimulation targets, enabling real-time modification of functional networks. Neurons used for photostimulation experiments were extracted from Sprague Dawley rat embryos of both sexes.


Assuntos
Cálcio , Neurônios , Optogenética , Software , Neurônios/fisiologia , Animais , Optogenética/métodos , Cálcio/metabolismo , Ratos , Holografia/métodos , Estimulação Acústica/métodos , Ratos Sprague-Dawley
19.
J Neurosci ; 44(44)2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39299802

RESUMO

Harmonics are an integral part of music, speech, and vocalizations of animals. Since the rest of the auditory environment is primarily made up of nonharmonic sounds, the auditory system needs to perceptually separate the above two kinds of sounds. In mice, harmonics, generally with two-tone components (two-tone harmonic complexes, TTHCs), form an important component of vocal communication. Communication by pups during isolation from the mother and by adult males during courtship elicits typical behaviors in female mice-dams and adult courting females, respectively. Our study shows that the processing of TTHC is specialized in mice providing neural basis for perceptual differences between tones and TTHCs and also nonharmonic sounds. Investigation of responses in the primary auditory cortex (Au1) from in vivo extracellular recordings and two-photon Ca2+ imaging of excitatory and inhibitory neurons to TTHCs exhibit enhancement, suppression, or no-effect with respect to tones. Irrespective of neuron type, harmonic enhancement is maximized, and suppression is minimized when the fundamental frequencies (F 0) match the neuron's best fundamental frequency (BF0). Sex-specific processing of TTHC is evident from differences in the distributions of neurons' best frequency (BF) and best fundamental frequency (BF0) in single units, differences in harmonic suppressed cases re-BF0, independent of neuron types, and from pairwise noise correlations among excitatory and parvalbumin inhibitory interneurons. Furthermore, TTHCs elicit a higher response compared with two-tone nonharmonics in females, but not in males. Thus, our study shows specialized neural processing of TTHCs over tones and nonharmonics, highlighting local network specialization among different neuronal types.


Assuntos
Estimulação Acústica , Córtex Auditivo , Animais , Feminino , Córtex Auditivo/fisiologia , Masculino , Camundongos , Estimulação Acústica/métodos , Caracteres Sexuais , Percepção Auditiva/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
20.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128941

RESUMO

High-frequency (>60 Hz) neuroelectric signals likely have functional roles distinct from low-frequency (<30 Hz) signals. While high-gamma activity (>60 Hz) does not simply equate to neuronal spiking, they are highly correlated, having similar information encoding. High-gamma activity is typically considered broadband and poorly phase-locked to sensory stimuli and thus is typically analyzed after transformations into absolute amplitude or spectral power. However, those analyses discard signal polarity, compromising the interpretation of neuroelectric events that are essentially dipolar. In the spectrotemporal profiles of field potentials in auditory cortex, we show high-frequency spectral peaks not phase-locked to sound onset, which follow the broadband peak of phase-locked onset responses. Isolating the signal components comprising the high-frequency peaks reveals narrow-band high-frequency oscillatory events, whose instantaneous frequency changes rapidly from >150 to 60 Hz, which may underlie broadband high-frequency spectral peaks in previous reports. The laminar amplitude distributions of the isolated activity had two peak positions, while the laminar phase patterns showed a counterphase relationship between those peaks, indicating the formation of dipoles. Our findings suggest that nonphase-locked HGA arises in part from oscillatory or recurring activity of supragranular-layer neuronal ensembles in auditory cortex.


Assuntos
Estimulação Acústica , Córtex Auditivo , Potenciais Evocados Auditivos , Animais , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Masculino , Eletroencefalografia , Macaca mulatta , Ritmo Gama/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA