Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339280

RESUMO

The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 µM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent.


Assuntos
Paclitaxel , Diester Fosfórico Hidrolases , Paclitaxel/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Humanos , Linhagem Celular Tumoral , Animais , Camundongos , Simulação por Computador , Simulação de Acoplamento Molecular , Sinergismo Farmacológico , Sobrevivência Celular/efeitos dos fármacos
2.
Ther Apher Dial ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39326924

RESUMO

INTRODUCTION: Peritoneal equilibration test (PET) has been used to monitor peritoneal function. A more convenient marker would be useful in clinical situations including home medical care. Autotaxin is known to leak into the interstitium as vascular permeability increases during the progression of tissue fibrosis. Therefore, we hypothesized that autotaxin concentrations in peritoneal dialysis (PD) effluent might reflect peritoneal function. METHODS: This study enrolled 45 patients undergoing PD from 2016 to 2021. Autotaxin concentrations measured in PD effluent were evaluated for their associations with markers obtained from PET. RESULTS: Mean age was 69 years, and 33 patients were men. Univariate and multivariate analyses revealed that autotaxin concentrations are associated with dialysate/plasma creatinine ratio, end/start dialysate glucose ratio, and the dip in the dialysate sodium concentration, a marker of ultrafiltration capacity, at baseline (all p < 0.05). CONCLUSIONS: Autotaxin concentrations in PD effluent might be an adjunct marker that reflects peritoneal function.

3.
Mol Pharm ; 21(10): 5171-5181, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39186477

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by unpredictable progression and limited therapeutic options. Current diagnosis relies on high resolution computed tomography (HRCT), which may not adequately capture early signs of deterioration. The enzyme autotaxin (ATX) emerges as a prominently expressed extracellular secretory enzyme in the lungs of IPF patients. The objective of this study was to evaluate the effectiveness of 18F-labeled ATX-targeted tracer [18F]ATX-1905, in comparison with [18F]FDG, for early fibrosis diagnosis, disease evolution monitoring, and treatment efficacy assessment in bleomycin-induced pulmonary fibrosis (BPF) models. To assess treatment efficacy, mice were treated with two commonly used drugs for IPF, pirfenidone or nintedanib, from Day 9 to Day 23 postbleomycin administration. Lung tissue assessments encompassed inflammation severity via H&E staining, and Ashcroft scoring via Masson staining, alongside quantification of ATX expression through ELISA. Positron emission tomography (PET) imaging employing [18F]FDG and [18F]ATX-1905 tracked disease progression pre- and post-treatment. The extent of pulmonary fibrosis corresponded to changes in ATX expression levels in the BPF mouse model. Notably, [18F]ATX-1905 exhibited elevated uptake in BPF lungs during the progression of the disease, particularly evident at the early stage (Day 9). This uptake was inhibited by an ATX inhibitor, PF-8380, underscoring the specificity of the radiotracer. Conversely, [18F]FDG uptake, peaking at Day 15, decreased subsequently, likely reflective of diminished inflammation. A 2-week treatment regimen using either pirfenidone or nintedanib resulted in notable reductions of ATX expression levels and fibrosis degrees within lung tissues, based on ELISA and Masson staining, as evidenced by PET imaging with [18F]ATX-1905. [18F]FDG uptake also decreased following the treatment period. Additionally, PET/CT imaging extended to a nonhuman primate (NHP) BPF model. The uptake of [18F]ATX-1905 (SUVmax = 2.2) was significantly higher than that of [18F]FDG (SUVmax = 0.7) in fibrotic lung tissue. Using our novel ATX-specific radiotracer [18F]ATX-1905 and PET/CT imaging, we demonstrated excellent ability in early fibrosis detection, disease monitoring, and treatment assessment within lungs of the BPF mouse models. [18F]ATX-1905 displayed remarkable specificity for ATX expression and high sensitivity for ATX alterations, suggesting its potential for monitoring varying ATX expression in lungs of IPF patients.


Assuntos
Bleomicina , Fluordesoxiglucose F18 , Indóis , Diester Fosfórico Hidrolases , Tomografia por Emissão de Pósitrons , Piridonas , Animais , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Piridonas/farmacologia , Indóis/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/metabolismo , Modelos Animais de Doenças , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Radioisótopos de Flúor , Compostos Radiofarmacêuticos , Masculino , Resultado do Tratamento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125747

RESUMO

Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.


Assuntos
Hidroxicloroquina , Camundongos Knockout , Prurido , Receptores de Ácidos Lisofosfatídicos , Animais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Prurido/induzido quimicamente , Prurido/metabolismo , Prurido/genética , Prurido/tratamento farmacológico , Camundongos , Hidroxicloroquina/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Masculino , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
5.
Molecules ; 29(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125098

RESUMO

2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cß1 (PLCß1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Glicerídeos , Lisofosfolipídeos , Transdução de Sinais , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Lisofosfolipídeos/metabolismo , Humanos , Ácidos Araquidônicos/metabolismo , Animais , Diester Fosfórico Hidrolases/metabolismo
6.
Stem Cell Rev Rep ; 20(7): 1971-1980, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38985374

RESUMO

Myocardial infarction (MI) triggers a complex inflammatory response that is essential for cardiac repair but can also lead to adverse outcomes if left uncontrolled. Recent studies have highlighted the importance of epigenetic modifications in regulating post-MI inflammation. This study investigated the role of the autotaxin (ATX)/lysophosphatidic acid (LPA) signaling axis in modulating myocardial inflammation through epigenetic pathways in a mouse model of MI. C57BL/6 J mice underwent left anterior descending coronary artery ligation to induce MI and were treated with the ATX inhibitor, PF-8380, or vehicle. Cardiac tissue from the border zone was collected at 6 h, 1, 3, and 7 days post-MI for epigenetic gene profiling using RT2 Profiler PCR Arrays. The results revealed distinct gene expression patterns across sham, MI + Vehicle, and MI + PF-8380 groups. PF-8380 treatment significantly altered the expression of genes involved in inflammation, stress response, and epigenetic regulation compared to the vehicle group. Notably, PF-8380 downregulated Hdac5, Prmt5, and Prmt6, which are linked to exacerbated inflammatory responses, as early as 6 h post-MI. Furthermore, PF-8380 attenuated the reduction of Smyd1, a gene important in myogenic differentiation, at 7 days post-MI. This study demonstrates that the ATX/LPA signaling axis plays a pivotal role in modulating post-MI inflammation via epigenetic pathways. Targeting ATX/LPA signaling may represent a novel therapeutic strategy to control inflammation and improve outcomes after MI. Further research is needed to validate these findings in preclinical and clinical settings and to elucidate the complex interplay between epigenetic mechanisms and ATX/LPA signaling in the context of MI.


Assuntos
Epigênese Genética , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Diester Fosfórico Hidrolases , Animais , Epigênese Genética/efeitos dos fármacos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Masculino , Inflamação/genética , Inflamação/patologia , Lisofosfolipídeos/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Isquemia Miocárdica/metabolismo
7.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062979

RESUMO

Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.


Assuntos
Lisofosfolipídeos , Neoplasias , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Lisofosfolipídeos/metabolismo , Animais , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38968609

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid that is mainly produced by the secreted lysophospholipase D, autotaxin (ATX), and signals through at least six G protein-coupled receptors (LPA1-6). Extracellular LPA is degraded through lipid phosphate phosphatases (LPP1, LPP2, and LPP3) at the plasmamembrane, terminating LPA receptor signaling. The ATX-LPA-LPP3 pathway is critically involved in a wide range of physiological processes, including cell survival, migration, proliferation, angiogenesis, and organismal development. Similarly, dysregulation of this pathway has been linked to many pathological processes, including cardiovascular disease. This review summarizes and interprets current literature examining the regulation and role of the ATX-LPA-LPP3 axis in heart disease. Specifically, the contribution of altered LPA metabolism via ATX and LPP3 and resulting changes to LPA receptor signaling in obesity cardiomyopathy, cardiac mitochondrial dysfunction, myocardial infarction/ischemia-reperfusion injury, hypertrophic cardiomyopathy, and aortic valve stenosis is discussed.

9.
IUCrJ ; 11(Pt 5): 780-791, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008358

RESUMO

The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Šresolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.


Assuntos
Cristalização , Cristalografia por Raios X/métodos , Humanos , Conformação Proteica , Síncrotrons
10.
J Pharm Pharmacol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39027928

RESUMO

BACKGROUND: Recent studies have suggested that serum autotaxin (ATX) may be a promising diagnostic biomarker in differentiating between Graves' disease (GD) and thyroiditis, as well as serving as a monitoring biomarker for GD. This study will evaluate the use of serum ATX as a diagnostic biomarker in these conditions. METHODS: In this prospective interventional study, blood samples were collected from the patients who met both inclusion and exclusion criteria, and serum ATX levels were measured by using the MyBioSource human Autotaxin ELISA kit. RESULTS: A total of 32 patients were enrolled, of which 18.8% were newly diagnosed with GD, 21.9% were thyroiditis, and 59.3% were on treatment for GD. Serum autotaxin antigen was significantly higher in GD patients than in thyroiditis (603.3217 ± 444.24 v/s 214.74 ± 55.91, P = <.005). Serum ATX measurement successfully discriminated GD patients from thyroiditis (AUC = 0.952, 95%CI: 0.00-1.00) with an optimal cutoff value of ≥257.20 ng/L (sensitivity = 100 and specificity = 81.71). Monitoring the efficacy of serum ATX was analyzed and showed a significant difference. CONCLUSION: The serum ATX was higher in subjects with GD as compared to thyroiditis, and ATX levels were found to be decreased during the treatment period. In conclusion, serum ATX can be used as a diagnostic and monitoring biomarker in GD.

11.
Neurobiol Stress ; 30: 100632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601361

RESUMO

The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.

12.
Hepatol Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539054

RESUMO

AIM: Autotaxin (ATX) is a newly identified liver fibrosis biomarker; however, its clinical usefulness remains unclear. Therefore, we analyzed the changes in patients with chronic hepatitis B virus infection treated with nucleos(t)ide analogs (NAs) to evaluate its usefulness. We also investigated the predictors of hepatocellular carcinoma development, including ATX, in patients with chronic hepatitis B based on their clinical characteristics. METHODS: This retrospective study included 179 patients with hepatitis B virus infection treated with NAs for >2 years. First, we measured the ATX levels before and up to 10 years after initiating entecavir (therapy for 88 patients whose serial ATX levels could be measured before and during entecavir therapy. Subsequently, for 179 patients whose ATX levels could be measured at the commencement of NAs, we examined the factors involved in developing hepatocellular carcinoma, including ATX. RESULTS: The ATX levels showed a gradual and significant decrease during the observation period of up to 10 years. Multivariable analysis showed that a baseline ATX/upper limits of normal ratio ≥1.214, age, and alkaline phosphatase levels were independent risk factors for hepatocellular carcinoma development. The combination of age and ATX/upper limits of normal ratio was used to stratify the high-risk groups for liver carcinogenesis. CONCLUSIONS: A decrease in ATX levels up to 10 years after the commencement of therapy suggested that ATX is a helpful biomarker in evaluating fibrosis in patients undergoing long-term NA therapy. Furthermore, this study showed that combining age and the baseline ATX/upper limits of normal ratio may help identify high-risk carcinogenesis groups.

13.
Liver Int ; 44(7): 1624-1633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517150

RESUMO

BACKGROUND AND AIMS: At present, there is still a lack of radical drug targets for intervention in alcoholic liver disease (ALD), and drug discovery through randomized controlled trials is a lengthy, risky, and expensive undertaking, so we aimed to identify effective drug targets based on human genetics. METHODS: We used Mendelian randomization (MR) and Bayesian colocalization analysis to investigate 2639 genes encoding druggable proteins and examined the causal effects on ALD (PMID 34737426: 456348 European with 451 cases and 455 897 controls). In addition, we conducted the mediation analysis to explore the potential mechanism using the genome-wide association study (GWAS) data of blood biomarkers as mediators. RESULTS: We finally identified the drug target: ENPP2/Autotaxin and genetically proxied ENPP2/Autotaxin was causally associated with the risk of ALD (OR = 2.28, 95% CI: 1.64 to 3.16, p = 7.49E-7). In addition, we found that the effect of ENPP2/Autotaxin on ALD may be partly mediated by effector memory CD8+ T cell (the proportion of mediation effect: 8.49%). CONCLUSIONS: Our integrative analysis suggested that genetically determined levels of circulating ENPP2/Autotaxin have a causal effect on ALD risk and are a promising drug target.


Assuntos
Estudo de Associação Genômica Ampla , Hepatopatias Alcoólicas , Análise da Randomização Mendeliana , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/sangue , Hepatopatias Alcoólicas/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Predisposição Genética para Doença , Biomarcadores/sangue
14.
Hepatol Res ; 54(9): 817-826, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38430513

RESUMO

BACKGROUND AND AIM: Autotaxin (ATX) is an extracellular lysophospholipase D that catalyzes the hydrolysis of lysophosphatidylcholine into lysophosphatidic acid (LPA). Recent accumulating evidence indicates the biological roles of ATX in malignant tumors. However, the expression and clinical implications of ATX in human cholangiocarcinoma (CCA) remain elusive. METHODS: In this study, the expression of ATX in 97 human CCA tissues was evaluated by immunohistochemistry. Serum ATX levels were determined in CCA patients (n = 26) and healthy subjects (n = 8). Autotaxin expression in cell types within the tumor microenvironment was characterized by immunofluorescence staining. RESULTS: High ATX expression in CCA tissue was significantly associated with a higher frequency of lymph node metastasis (p = 0.050). High ATX expression was correlated with shorter overall survival (p = 0.032) and recurrence-free survival (RFS) (p = 0.001) than low ATX expression. In multivariate Cox analysis, high ATX expression (p = 0.019) was an independent factor for shorter RFS. Compared with low ATX expression, high ATX expression was significantly associated with higher Ki-67-positive cell counts (p < 0.001). Serum ATX levels were significantly higher in male CCA patients than in healthy male subjects (p = 0.030). In the tumor microenvironment of CCA, ATX protein was predominantly expressed in tumor cells, cancer-associated fibroblasts, plasma cells, and biliary epithelial cells. CONCLUSIONS: Our study highlights the clinical evidence and independent prognostic value of ATX in human CCA.

15.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542186

RESUMO

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Assuntos
Canabinoides , Maconha Medicinal , Humanos , Endocanabinoides , Diester Fosfórico Hidrolases/metabolismo , Lisofosfolipídeos/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico
16.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447786

RESUMO

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Assuntos
Lisofosfolipídeos , Neoplasias , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Neoplasias/metabolismo , Sítios de Ligação , Sítio Alostérico
17.
BMC Med ; 22(1): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486246

RESUMO

BACKGROUND: Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS: ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS: The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-ß signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS: ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Animais , Camundongos , Coelhos , Estenose da Valva Aórtica/tratamento farmacológico , Osteogênese , Calcinose/tratamento farmacológico , Células Cultivadas , Fibrose , Colesterol , Receptores de Interleucina-1 , Lipídeos
18.
Ann Hematol ; 103(5): 1705-1715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494552

RESUMO

Veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT), and stratification of the high-risk group before transplantation is significant. Serum autotaxin (ATX) levels have been reported to increase in patients with liver fibrosis caused by metabolic inhibition from liver sinusoidal endothelial cells. Considering that the pathophysiology of VOD/SOS begins with liver sinusoidal endothelial cell injury, an increase in serum ATX levels may precede the onset of VOD/SOS. A retrospective study with 252 patients, including 12 patients with VOD/SOS, who had received allo-HCT was performed. The cumulative incidence of VOD/SOS was higher in the group with serum ATX levels before conditioning (baseline ATX) above the upper reference limit (high ATX group, p < 0.001), and 1-year cumulative incidences were 22.7% (95% confidence interval [95%CI], 3.1-42.4%) and 3.5% (95%CI, 1.1-5.8%), respectively. In the multivariate analysis, elevated baseline ATX was identified as an independent risk factor for VOD/SOS development and showed an additive effect on the predictive ability of known risk factors. Furthermore, the incidence of VOD/SOS-related mortality was greater in the high ATX group (16.7% vs. 1.3%; p = 0.005). Serum ATX is a potential predictive marker for the development of VOD/SOS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Hepatopatia Veno-Oclusiva , Humanos , Hepatopatia Veno-Oclusiva/epidemiologia , Hepatopatia Veno-Oclusiva/etiologia , Estudos Retrospectivos , Células Endoteliais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Fatores de Risco
19.
Anticancer Res ; 44(3): 1131-1142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423649

RESUMO

BACKGROUND/AIM: Cancer stem cells (CSCs) contribute significantly to the poor prognosis of patients with epithelial ovarian cancer (EOC) due to their roles in drug resistance and tumor metastasis. Autotaxin (ATX) plays a pivotal role in the maintenance of the CSC-like properties of EOC tumors. BBT-877 is a novel ATX inhibitor used in clinical treatment of idiopathic pulmonary fibrosis. However, the effects of BBT-877 on drug resistance and metastasis in ovarian CSCs remain unknown. In this study, we aimed to investigate the effects of BBT-877 on drug resistance and intraperitoneal metastasis of EOC. MATERIALS AND METHODS: Spheroid-forming CSCs, which were isolated from two EOC cell lines, A2780 and SKOV3, were investigated by cell viability, western blot, PCR, Spheroid-forming assay, and in vivo experiments. RESULTS: Spheroid-forming CSCs exhibited increased CSC-like properties and paclitaxel (PTX) resistance. BBT-877 treatment inhibited the viability of spheroid-forming CSCs more potently than that of adherent ovarian cancer cell lines. Combinatorial treatment with BBT-877 and PTX significantly attenuated the viability of spheroid-forming CSCs. In a SKOV3 cells-derived intraperitoneal metastasis model, BBT-877 treatment reduced the number of metastatic tumor nodes, while combinatorial treatment with BBT-877 and PTX more potently attenuated the formation of metastatic nodes and accumulation of ascitic fluid. CONCLUSION: These results suggest that BBT-877 can be combined with conventional anticancer drugs for the treatment of patients with recurrent or drug-resistant EOC.


Assuntos
Neoplasias Ovarianas , Oxazóis , Piperazinas , Humanos , Feminino , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo
20.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285669

RESUMO

Chronic pain is a common and debilitating condition with a huge social and economic burden worldwide. Currently, available drugs in clinics are not adequately effective and possess a variety of severe side effects leading to treatment withdrawal and poor quality of life. Recent findings highlight the potential role of autotaxin (ATX) as a promising novel target for chronic pain management, extending beyond its previously established involvement in arthritis and other neurological disorders, such as Alzheimer's disease. In the present study, we used a virtual screening strategy by targeting ATX against commercially available natural compounds (enamine- phenotypic screening library) to identify the potential inhibitors for the treatment of chronic pain. After initial identification using molecular docking based virtual screening, molecular mechanics (MM/GBSA), ADMET profiling and molecular dynamics simulation were performed to verify top hits. The computational screening resulted in the identification of fifteen top scoring structurally diverse hits that have free energy of binding (ΔG) values in the range of -25.792 (for compound Enamine_1850) to -74.722 Kcal/mol (for compound Enamine_1687). Moreover, the top-scoring hits have favourable ADME properties as calculated using in-silico algorithms. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about amino acid residues involved in binding. This study led to the identification of potential autotaxin inhibitors with favourable pharmacokinetic properties. Identified hits may further be investigated for their safety and efficacy potential using in-vitro and in-vivo models of chronic pain.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA