Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 13(1): 4, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910904

RESUMO

Patient-derived tumor xenografts (PDXs), in which tumor fragments surgically dissected from cancer patients are directly transplanted into immunodeficient mice, have emerged as a useful model for translational research aimed at facilitating precision medicine. PDX susceptibility to anti-cancer drugs is closely correlated with clinical data in patients, from whom PDX models have been derived. Accumulating evidence suggests that PDX models are highly effective in predicting the efficacy of both conventional and novel anti-cancer therapeutics. This also allows "co-clinical trials," in which pre-clinical investigations in vivo and clinical trials could be performed in parallel or sequentially to assess drug efficacy in patients and PDXs. However, tumor heterogeneity present in PDX models and in the original tumor samples constitutes an obstacle for application of PDX models. Moreover, human stromal cells originally present in tumors dissected from patients are gradually replaced by host stromal cells as the xenograft grows. This replacement by murine stroma could preclude analysis of human tumor-stroma interactions, as some mouse stromal cytokines might not affect human carcinoma cells in PDX models. The present review highlights the biological and clinical significance of PDX models and three-dimensional patient-derived tumor organoid cultures of several kinds of solid tumors, such as those of the colon, pancreas, brain, breast, lung, skin, and ovary.


Assuntos
Neoplasias/patologia , Técnicas de Cultura de Órgãos , Organoides/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Neoplasias/tratamento farmacológico , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Cancers (Basel) ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500168

RESUMO

Our poor understanding of the intricate biology of cancer and the limited availability of preclinical models that faithfully recapitulate the complexity of tumors are primary contributors to the high failure rate of novel therapeutics in oncology clinical studies. To address this need, patient-derived xenograft (PDX) platforms have been widely deployed and have reached a point of development where we can critically review their utility to model and interrogate relevant clinical scenarios, including tumor heterogeneity and clonal evolution, contributions of the tumor microenvironment, identification of novel drugs and biomarkers, and mechanisms of drug resistance. Colorectal cancer (CRC) constitutes a unique case to illustrate clinical perspectives revealed by PDX studies, as they overcome limitations intrinsic to conventional ex vivo models. Furthermore, the success of molecularly annotated "Avatar" models for co-clinical trials in other diseases suggests that this approach may provide an additional opportunity to improve clinical decisions, including opportunities for precision targeted therapeutics, for patients with CRC in real time. Although critical weaknesses have been identified with regard to the ability of PDX models to predict clinical outcomes, for now, they are certainly the model of choice for preclinical studies in CRC. Ongoing multi-institutional efforts to develop and share large-scale, well-annotated PDX resources aim to maximize their translational potential. This review comprehensively surveys the current status of PDX models in translational CRC research and discusses the opportunities and considerations for future PDX development.

3.
Adv Nutr ; 8(4): 546-557, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28710142

RESUMO

Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).


Assuntos
Envelhecimento , Encéfalo/fisiologia , Regeneração Nervosa , Estado Nutricional , Animais , Relógios Biológicos/fisiologia , Cognição , Disfunção Cognitiva/dietoterapia , Dieta , Microbioma Gastrointestinal , Homeostase , Humanos , Micronutrientes/administração & dosagem , Modelos Animais , Neoplasias/dietoterapia , Doenças Neurodegenerativas/dietoterapia , Medicina Regenerativa , Células-Tronco/metabolismo
4.
Front Oncol ; 4: 322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478323

RESUMO

The majority of high-grade serous ovarian carcinoma cases are detected in advanced stages when treatment options are limited. Surgery is less effective at eradicating the disease when it is widespread, resulting in high rates of disease relapse and chemoresistance. Current screening techniques are ineffective for early tumor detection and consequently, BRCA mutations carriers, with an increased risk for developing high-grade serous ovarian cancer, elect to undergo risk-reducing surgery. While prophylactic surgery is associated with a significant reduction in the risk of cancer development, it also results in surgical menopause and significant adverse side effects. The development of efficient early-stage screening protocols and imaging technologies is critical to improving the outcome and quality of life for current patients and women at increased risk. In addition, more accurate animal models are necessary in order to provide relevant in vivo testing systems and advance our understanding of the disease origin and progression. Moreover, both genetically engineered and tumor xenograft animal models enable the preclinical testing of novel imaging techniques and molecularly targeted therapies as they become available. Recent advances in xenograft technologies have made possible the creation of avatar mice, personalized tumorgrafts, which can be used as therapy testing surrogates for individual patients prior to or during treatment. High-grade serous ovarian cancer may be an ideal candidate for use with avatar models based on key characteristics of the tumorgraft platform. This review explores multiple strategies, including novel imaging and screening technologies in both patients and animal models, aimed at detecting cancer in the early-stages and improving the disease prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA