RESUMO
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian ß-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
RESUMO
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Assuntos
Adaptação ao Hospedeiro , Salmonella typhimurium , Humanos , Animais , Salmonella typhimurium/genética , Animais Selvagens , Aves , SorogrupoRESUMO
In Argentina, the Pampa ecoregion has been almost completely transformed into agroecosystems. To evaluate the environmental (agricultural area, tree coverage, distance to the nearest water body and urban site) and biological (dove, cowbird, and sparrow abundance) effects on free-ranging bird exposure to St. Louis encephalitis virus (SLEV) and West Nile virus (WNV), we used generalized linear mixed models. For 1,019 birds sampled during 2017-2019, neutralizing antibodies were found against SLEV in samples from 60 (5.8%) birds and against WNV for 21 (2.1%). The best variable for explaining SLEV seroprevalence was agricultural area, which had a positive effect; however, for WNV, no model was conclusive. Our results suggest that agroecosystems in the La Pampa ecoregion increase the exposure of avian hosts to SLEV, thus potentially increasing virus activity.
Assuntos
Doenças das Aves , Encefalite de St. Louis , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Argentina/epidemiologia , Aves , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/veterinária , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterináriaRESUMO
BACKGROUND: While the dynamics of disease emergence is driven by host-parasite interactions, the structure and dynamics of these interactions are still poorly understood. Here we study the phylogenetic and morphological clustering of haemosporidian parasite lineages in a local avian host community. Subsequently, we examine geographical patterns of parasite assemblages in selected avian hosts breeding in Europe. METHODS: We conduct phylogenetic and haplotype network analyses of Haemoproteus (Parahaemoproteus) lineages based on a short and an extended cytochrome b barcode region. Ordination analyses are used to examine changes in parasite assemblages with respect to climate type and geography. RESULTS: We reveal relatively low phylogenetic clustering of haemoproteid lineages in a local avian host community and identify a potentially new Haemoproteus morphospecies. Further, we find that climate is effectively capturing geographical changes in parasite assemblages in selected widespread avian hosts. Moreover, parasite assemblages are found to vary distinctly across the host's breeding range, even within a single avian host. CONCLUSIONS: This study suggests that a few keystone hosts can be important for the local phylogenetic and morphological clustering of haemoproteid parasites. Host spatio-temporal dynamics, both for partially and long-distance migratory birds, appear to explain geographical variation in haemoproteid parasite assemblages. This study also gives support to the idea that climate variation in terms of rainfall seasonality can be linked to the propensity for host switching in haemosporidians.
RESUMO
Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Nevertheless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Additionally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research.
RESUMO
BACKGROUND: Birds are known to maintain and spread human pathogenic borreliae, but they are common hosts of diverse parasite communities, notably haemosporidians. Only a few studies examined whether tick infestation and/or Borrelia prevalences vary with hosts' haemosporidian infection status. METHODS: Here, we study whether Ixodes ricinus infestation rates and Borrelia infection rates in bird-feeding ticks vary according to haemosporidian infection status in a community of free-living avian tick hosts. RESULTS: Birds of six avian species harbored the majority of ticks. Both the tick infestation prevalence and the intensity peaked during spring and summer, but while bird-feeding nymphs prevailed in spring, bird-feeding larvae dominated in summer. Almost half of the bird-feeding ticks were found to be positive for B. burgdorferi s.l. Although the majority of infections involved bird-associated B. garinii and B. valaisiana, B. garinii appears to be the dominant Borrelia strain circulating in locally breeding avian species. We detected a negative link between the hosts' haemosporidian infection status and the Borrelia infection rate of bird-feeding ticks, but the association was dependent on the host's age. CONCLUSIONS: Our results on tick infestation intensity support the idea that more immunologically vulnerable hosts harbor more ticks but suggest that different mechanisms may be responsible for tick infestation rates among immunologically naïve and experienced avian hosts. The results on Borrelia infection rates in bird-feeding ticks are consistent with studies revealing that intracellular parasites, such as haemosporidians, can benefit from the host immune system prioritizing immune responses against extracellular parasites at the expense of immune responses against intracellular parasites. The findings of our study urge for a more robust design of parasitological studies to understand the ecology of interactions among hosts and their parasites.
RESUMO
BACKGROUND: Despite their importance as vectors of zoonotic parasites that can impact human and animal health, Culicoides species distribution across different habitat types is largely unknown. Here we document the community composition of Culicoides found in an urban environment including developed and natural sites in east central Texas, a region of high vector diversity due to subtropical climates, and report their infection status with haemoparasites. RESULTS: A total of 251 individual Culicoides were collected from May to June 2016 representing ten Culicoides species, dominated by C. neopulicaris followed by C. crepuscularis. We deposited 63 sequences to GenBank among which 25 were the first deposition representative for six Culicoides species: C. arboricola (n = 1); C. nanus (n = 4); C. debilipalpis (n = 2); C. haematopotus (n = 14); C. edeni (n = 3); and C. hinmani (n = 1). We also record for the first time the presence of C. edeni in Texas, a species previously known to occur in the Bahamas, Florida and South Carolina. The urban environments with natural area (sites 2 and 4) had higher species richness than sites more densely populated or in a parking lot (sites 1 and 3) although a rarefaction analysis suggested at least two of these sites were not sampled sufficiently to characterize species richness. We detected a single C. crepuscularis positive for Onchocercidae gen. sp. DNA and another individual of the same species positive for Haemoproteus sacharovi DNA, yielding a 2.08% prevalence (n = 251) for both parasites in this species. CONCLUSIONS: We extend the knowledge of the Culicoides spp. community in an urban environment of Texas, USA, and contribute to novel sequence data for these species. Additionally, the presence of parasite DNA (Onchocercidae gen. sp. and H. sacharovi) from C. crepuscularis suggests the potential for this species to be a vector of these parasites.
Assuntos
Doenças das Aves/transmissão , Ceratopogonidae/parasitologia , Insetos Vetores/parasitologia , Passeriformes/parasitologia , Infecções Protozoárias em Animais/transmissão , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Ceratopogonidae/classificação , Ceratopogonidae/genética , DNA de Helmintos/isolamento & purificação , Ecossistema , Filarioidea/genética , Filarioidea/isolamento & purificação , Haemosporida/genética , Haemosporida/isolamento & purificação , Insetos Vetores/classificação , Insetos Vetores/genética , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Análise de Sequência de DNA , Texas/epidemiologia , População UrbanaRESUMO
Winter ecology of putative vectors of eastern equine encephalomyelitis virus (EEEV) in northern Florida was investigated at field locations with evidence of historic EEEV winter transmission. Light traps and resting shelters were used to sample the mosquito community in the vicinity of eight sentinel flocks throughout the winter period (November-April) of 2013 and 2014 in Walton County, FL. Overall mosquito activity was relatively low, although mosquitoes were captured during each week of the study period. Mosquito activity was linked to morning temperature, and females were captured when ambient morning temperatures were quite low (1-5°C). Anopheles crucians Wiedemann, Culex erraticus (Dyar and Knab), Culex territans Walker, and Culiseta melanura (Coquillett) were the most commonly collected mosquito species (of 20 total species). Analysis of blood-engorged mosquitoes revealed a number of mosquito species feeding upon chickens, other birds, amphibians, and domestic and wild mammals. Cs. melanura fed primarily upon chickens and songbirds (Passeriformes), suggesting that this mosquito species is the likely winter vector of EEEV to sentinel chickens in northern Florida. Both resident and nonresident songbird species were fed upon, constituting 63.9 and 36.1% of total songbird meals, respectively. Our results suggest important roles for Cs. melanura and songbird hosts for the winter transmission of EEEV in northern Florida.
Assuntos
Culicidae/fisiologia , Culicidae/virologia , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina/transmissão , Estações do Ano , Animais , Encefalomielite Equina/virologia , Comportamento Alimentar , Feminino , Florida , Cadeia Alimentar , Reação em Cadeia da Polimerase , VertebradosRESUMO
Ixodid ticks were collected from wild birds in five ecoregions in north-central Argentina, namely: Selva de las Yungas, Esteros del Iberá, Delta e Islas del Paraná, Selva Paranaense and Chaco Seco. A total of 2199 birds belonging to 139 species, 106 genera, 31 families and 11 orders were captured, but ticks were collected only from 121 birds (prevalence=5.5%) belonging to 39 species (28.1%) and three Orders: Tinamiformes (Tinamidae) and Falconiformes (Falconidae) in Selva de las Yungas and Passeriformes (Conopophagidae, Corvidae, Emberizidae, Furnariidae, Icteridae, Parulidae, Thamnophilidae, Thraupidae, Troglodytidae, Turdidae) for all ecoregions. The following tick species were found: Haemaphysalis juxtakochi, Haemaphysalis leporispalustris, Ixodes pararicinus plus Amblyomma sp. and Haemaphysalis sp. in Selva de las Yungas; Amblyomma triste and Ixodes auritulus in Delta e Islas del Paraná; Amblyomma dubitatum, A. triste and Amblyomma sp. in Esteros del Iberá; Amblyomma ovale and Amblyomma sp. in Selva Paranaense, and Amblyomma tigrinum in Chaco Seco. Amblyomma dubitatum was found for the first time on Passeriformes, while the records of A. ovale on avian hosts are the first for Argentina. Birds are also new hosts for I. pararicinus females. Besides 2 larvae and 1 nymph, and 1 larvae found on Tinamidae (Tinamiformes) and Falconidae (Falconiformes), respectively, all other ticks (691 larvae, 74 nymphs and 2 females) were found on Passeriformes with a relevant contribution of the family Turdidae. Birds are important hosts for I. pararicinus as shown by a prevalence of 45% while all others prevalence were below 15%. All the species of Amblyomma and Haemaphysalis found on birds in Argentina have been also detected on humans and are proven or potential vectors for human diseases. Therefore, their avian hosts are probable reservoirs of human pathogens in Argentina.