RESUMO
Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using 18O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with 18O-H2O was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., Gp10, Actinomarinicola, Bosea, Acidibacter, and Gemmata) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.
Assuntos
Bactérias , Carbono , Estações do Ano , Microbiologia do Solo , Solo , Carbono/metabolismo , Solo/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Aquecimento Global , Ecossistema , Pradaria , Ciclo do CarbonoRESUMO
Melatonin (MLT) is a methoxyindole that has potent antioxidant actions, anti-inflammatory, and antiapoptotic capacity. However, its in vitro antibacterial capacity has been the least studied of its properties. Dimethylsulfoxide (DMSO) has been the most used solvent for these tests, but it shows an antimicrobial effect if it is not dissolved. Cyrene™ is a new solvent that has emerged as an alternative to DMSO. Therefore, this study aimed to determine the antimicrobial capacity of MLT by MIC assays, using Cyrene™ as a solvent. Likewise, the solubility of MLT in this solvent and whether it exerted any effect on bacterial growth at different percentages was also determined. Different dilutions of MLT in Cyrene™ with different concentrations, were prepared. No growth inhibition caused by MLT was observed. The growth inhibition observed was because of Cyrene™. The maximum amount of MLT that can be diluted in 100% Cyrene is 10 mg/mL, but this percentage of solvent shows a bactericidal effect. Therefore, it must be dissolved at 5% to avoid this effect, so only 4 mg/mL of MLT can be diluted in it. Therefore, if no other solvents are available, the in vitro antibacterial role of MLT cannot be adequately assessed.
Assuntos
Antibacterianos , Dimetil Sulfóxido , Melatonina , Testes de Sensibilidade Microbiana , Solventes , Melatonina/farmacologia , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Solventes/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , SolubilidadeRESUMO
Anammox bacteria are obligate anaerobic bacteria that exist widely in nature with sufficient amounts of dissolved oxygen. However, whether anammox bacteria can grow under aerobic conditions remains unclear. In this study, we found that the production of nitrate in the anammox system under aerobic conditions was significantly higher than that under anaerobic conditions without total nitrogen loss. Anammox bacteria can grow by oxidizing nitrite and dehydrogenating hydrazine to produce electrons for carbon fixation. The hydrazine dehydrogenase in anammox bacteria was inhibited under aerobic conditions, and the nitrite oxidoreductase transcription expression of anammox bacteria increased by 2.7 times compared to that under anaerobic conditions, which was the main way for anammox bacteria perform carbon fixation. DNA-stable isotope probing with 13C bicarbonate found the existence of anammox bacteria with 13C isotopes in aerobic cultivation, further proving that anammox bacteria can grow under aerobic condition. More than half of the pathways in glycolysis, the Wood-Ljungdahl pathway, and the tricarboxylic acid cycle were upregulated in anammox bacteria in aerobic condition. Large amounts of bacterioferritins are the important antioxidative enzymes in anammox bacteria in the aerobic environment, which contributes to their stronger oxygen adaptation than other anaerobes. This study expands our understanding of the growth mechanism of anammox bacteria as well as the oxygen adaptation strategies of obligate anaerobic bacteria.
Assuntos
Bactérias , Aerobiose , Bactérias/metabolismo , Anaerobiose , Oxirredução , Nitratos/metabolismo , Nitritos/metabolismoRESUMO
Introduction: The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods: Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results: Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion: Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.
RESUMO
To investigate the hypothesis of top-down control by viruses and heterotrophic nanoflagellates on bacterial-mediated carbon fluxes in freshwater systems, a year-long study (2023-2024) was conducted in the pelagic zone of Lake Saint-Gervais (France). The variability in BGE (9.9% to 45.5%) was attributed to the decoupling of production and respiration, providing bacterioplankton communities with a competitive advantage in adapting to fluctuating environmental disturbances in freshwater systems. The high nucleic acid (HNA) bacterial community, the active fraction, contributed the most to bacterial production and was linked to BGE estimates. Weak bottom-up controls (nutrient concentrations and stoichiometry) on BGE suggested a stronger role for mortality forces. Among viral subgroups (VLP1-VLP4) identified via flow cytometry, the dominant low-fluorescence DNA VLP1 subgroup (range = 0.7 to 3.1 × 108 VLP mL-1) accounting for the majority of viral production was closely linked to the HNA population. Both top-down forces exerted antagonistic effects on BGE at the community level. The preferential lysis and grazing of the susceptible HNA population, which stimulated bacterial community respiration more than production in the non-target population, resulted in reduced BGE. These results underscore the key role of top-down processes in shaping carbon flux through bacterioplankton in this freshwater system.
RESUMO
Processing of edible insects typically involves fractionating into high-value food ingredients, which results in by-products containing chitin and insoluble proteins. This study examined the effectiveness of lactic acid bacteria (LAB) in removing proteins from chitin in insect processing residues. Lesser mealworm processing residues were biologically treated for 48 and 120 h using LAB strains without added carbon sources. Results showed partial deproteinization, up to 29 % with Levilactobacillus brevis after 120 h. Most LAB grew up to 2 log10 colony-forming units/mL in the first 48 h. Confocal microscopy and Fourier-transform infrared spectra indicated that some protein remained attached to chitin. The molecular weight of solubilized proteins was affected by strain and time of incubation, with antioxidant activity increasing significantly after 120 h with Lacticaseibacillus paracasei. The biological treatment of insect processing streams can be a sustainable approach to producing high amounts of LAB biomass with subsequent protein solubilization and chitin release.
Assuntos
Biomassa , Quitina , Quitina/metabolismo , Animais , Biotransformação , Insetos , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/metabolismoRESUMO
Carvacrol is a compound present in essential oils with proven antimicrobial activity against numerous pathogens. We firstly determine the post-antibiotic effect (PAE) of carvacrol (1×, 2×, 4× MIC) and post-antibiotic sub-minimum inhibitory concentration (MIC) effect (1× + 0.25× MIC and 2× + 0.25× MIC) for two concentrations of Salmonella Typhimurium ATCC14028 (106 and 108 CFU/mL). Prior to testing, the minimum concentration and exposure time to achieve the bacterial inhibition (MIC 0.6 mg/mL and 10 min) were determined by broth microdilution and time-kill curve methods, respectively. At the MIC, carvacrol did not generate any PAE. At twice the MIC, the PAE was 2 h with the standard inoculum (106 CFU/mL) and 1 h with the high-density inoculum (108 CFU/mL). At 4× MIC concentrations, the PAE was higher in both cases > 43.5 h. Continuous exposure of post-antibiotic phase bacteria (1× and 2× MIC) to carvacrol at 0.25× MIC (0.15 mg/mL) resulted in an increase in PAE (PA-SME) above 43.5 h with both inocula. These results suggest that the PA-SME of carvacrol for S. Typhimurium can be significantly prolonged by increasing the sub-MICs, which would allow dose spacing, reduce adverse effects and improve its efficacy in the treatment of infected animals and as a disinfectant in agri-food facilities.
RESUMO
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Assuntos
Meios de Cultura , Luz , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultura/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Luz AzulRESUMO
OBJECTIVE: Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS: Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION: EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.
Assuntos
Catequina , Fusobacterium nucleatum , Doenças Periodontais , Porphyromonas gingivalis , Prevotella intermedia , Streptococcus mutans , Chá , Catequina/farmacologia , Catequina/análogos & derivados , Chá/química , Streptococcus mutans/efeitos dos fármacos , Doenças Periodontais/microbiologia , Doenças Periodontais/tratamento farmacológico , Porphyromonas gingivalis/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Prevotella intermedia/efeitos dos fármacos , Fusobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Prevotella nigrescens/efeitos dos fármacos , HumanosRESUMO
Drinking water distribution systems are increasingly vulnerable to sewage intrusion due to aging water infrastructure and intensifying water stress. While the health risks associated with sewage intrusion have been extensively studied, little is known about the impacts of intruded bacteria and dissolved organic matter (DOM) on microbiology in drinking water. In this dynamic study, we demonstrate that the intrusion of 1 % sewage into tap water resulted in immediate contamination, including an 8-fold increase in biomass (TCC), a 48.9 % increase in bacterial species (ASVs), a 12.5 % increase in organic carbon content (DOC), and a 13.5 % increase in unique DOM molecular formulae. Over time, sewage intrusion altered tap water microbiology by accelerating bacterial growth rates (5-fold faster), selectively promoting ASVs in community succession, and producing 998 more unique DOM formulae. More significantly, statistical analysis revealed that the intrusion of 1 % sewage shifted the driving force of bacterial and DOM composition covariance from a DOM-dependent process in tap water to a bacterial-governed process post-intrusion. Our results clearly demonstrate the disruptive effects of sewage intrusion into tap water, emphasizing the urgent need to consider the long-lasting impacts of sewage intrusion in drinking water distribution systems, in addition to its immediate health risks.
RESUMO
OBJECTIVE: To determine the ability of bacteria commonly isolated from equine limb wounds to survive in saltwater obtained from an equine hydrotherapy unit at different salinity concentrations and temperatures. METHODS: Saltwater samples were obtained over a 2-week period (January 22, 2024 to February 2, 2024) from an equine hydrotherapy unit used for clinical patients, kept at either full salinity per manufacturer recommendations or diluted to half salinity to mimic the dilution that likely occurs in the clinical setting between cases when holding tanks are replenished with tap water only. Samples were then autoclaved to eliminate preexisting bacterial contamination before individual inoculation with Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus zooepidemicus. Each inoculated sample was maintained at 2, 22, or 44 °C to represent typical holding tank conditions. The bacterial concentration was determined at each condition every 24 hours up to and including 96 hours. The lower limit of detection was set at 1 CFU/mL. RESULTS: Salinity did not affect bacterial survival. Bacterial concentrations generally decreased with increasing temperature over time. Escherichia coli, S aureus, and S zooepidemicus concentrations decreased to the lower limit of detection at 44 °C by 24 to 48 hours, while P aeruginosa concentrations significantly decreased over 24 hours but remained well above the lower limit of detection. CONCLUSIONS: Common bacterial isolates of equine limb wounds can survive in typical saltwater hydrotherapy conditions. CLINICAL RELEVANCE: Further investigation is warranted to determine the clinical relevance of these findings including protocols for hydrotherapy unit disinfection, wastage of treatment water, and case inclusion/exclusion criteria.
RESUMO
Depending upon nutrient availability, bacteria transit to multiple growth phases. The transition from the active to nongrowing phase results in reduced drug efficacy and, in some cases, even multidrug resistance. However, due to multiple alterations in the cell envelope, probing the drug permeation kinetics during growth phases becomes perplexing, especially across the Gram-negative bacteria's complex dual membrane envelope. To advance the understanding of drug permeation during the life cycle of Gram-negative bacteria, we sought to address two underlying objectives: (a) how changes are occurring inside the bacterial envelope during growth and (b) how the drug permeation and accumulation vary across both the membranes and in subcellular compartments during growth. Both objectives are met with the help of nonlinear optical technique second-harmonic generation spectroscopy (SHG). Specifically, using SHG, we probed the transport kinetics and accumulation of a quaternary ammonium compound (QAC), malachite green, inside Escherichia coli in various growth phases. Further insight about another QAC molecule, propidium iodide, is accomplished using fluorescence microscopy. Results indicate that actively growing cells have faster drug transport and higher cytoplasmic accumulation than slow- or nongrowing cells. In this regard, the rpoS gene plays a crucial role in limiting drug transport across the saturation phase cultures. Moreover, within a particular growth phase, membrane permeability undergoes gradual changes much before the subsequent growth phase commences. These outcomes signify the importance of reporting the growth phase and rate in drug efficacy studies.
Assuntos
Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Transporte Biológico , Antibacterianos/farmacologia , Membrana Celular/metabolismo , Propídio/metabolismo , CinéticaRESUMO
Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.
Assuntos
Toxinas Bacterianas , Clostridium perfringens , Gangrena Gasosa , Fosfolipases Tipo C , Clostridium perfringens/genética , Clostridium perfringens/crescimento & desenvolvimento , Clostridium perfringens/metabolismo , Clostridium perfringens/fisiologia , Camundongos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Gangrena Gasosa/microbiologia , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Diferenciação Celular , Células Musculares/microbiologia , Células Musculares/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de QuorumRESUMO
Conventional Mycoplasma spp. diagnostics involve culture, often considered the gold standard in diagnostic test evaluation. However, culture protocols lack empirical derivation and primarily adhere to National Mastitis Council recommendations, tracing back to initial cultivation of Mycoplasma bovis. Despite a wide range of carbon dioxide (CO2) supplementation reported in literature, specific impacts of CO2 on Mycoplasma spp. growth remain unexplored. Our objective was to assess the effect of CO2 concentration on growth detection rates of 24 Mycoplasma spp. isolates from dairy cows. These isolates, mainly M. bovis, were incubated at 37°C in triplicate and three dilution ranges under three CO2 conditions: ambient air or 5% CO2 or 10% CO2. Bacterial growth was evaluated on incubation days 3, 5, 7, and 10. When cultured using ambient air, log10 cfu/mL was lower on days 3, 5, and 7 of incubation compared with isolates incubated in the recommended 5% or 10% CO2, with less variation observed in ambient air compared with 5% or 10% CO2. However, by 10 days of incubation, no differences in the detection of observable growth were noted among isolates incubated in ambient air, 5% CO2, or 10% CO2. Consequently, Mycoplasma spp. isolated from dairy cattle demonstrated growth after the recommended 7-10 days of culture, even in the absence of supplemental CO2. Given the expected concentration of M. bovis in (sub)clinical samples had similar concentrations to those used in our study, with the majority of isolates being M. bovis, we recommend expanding CO2 concentration ranges in M. bovis culture from 10% CO2 to ambient air when incubating for 10 days. However, the turnaround time could be shortened when incubating with supplemental CO2. IMPORTANCE: Current Mycoplasma spp. culture protocols lack empirical derivation concerning carbon dioxide (CO2) supplementation and are primarily based on the initial cultivation of Mycoplasma bovis. This study indicates that the suitable range for CO2 supplementation is broader than what is currently recommended by the National Mastitis Council for culturing within the specified 7-10 days. No differences in bacterial growth detection rates were observed among ambient air, 5% CO2, or 10% CO2 supplementation during the 7- and 10-day incubation intervals. These new insights provide evidence supporting the possibility of culturing Mycoplasma spp. under ambient air conditions in a laboratory setting.
Assuntos
Dióxido de Carbono , Infecções por Mycoplasma , Mycoplasma , Animais , Bovinos , Dióxido de Carbono/metabolismo , Feminino , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/diagnóstico , Mycoplasma/isolamento & purificação , Mycoplasma/crescimento & desenvolvimento , Mycoplasma/efeitos dos fármacos , Mycoplasma bovis/crescimento & desenvolvimento , Mycoplasma bovis/isolamento & purificação , Mycoplasma bovis/efeitos dos fármacos , Mastite Bovina/microbiologia , Mastite Bovina/diagnóstico , Leite/microbiologia , Sensibilidade e EspecificidadeRESUMO
This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.
Assuntos
Frutas , Probióticos , Probióticos/metabolismo , Frutas/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/fisiologia , Anacardium/microbiologia , Anacardium/crescimento & desenvolvimento , Psidium/crescimento & desenvolvimento , Psidium/microbiologia , Malpighiaceae/crescimento & desenvolvimento , Malpighiaceae/microbiologia , Liofilização , Viabilidade Microbiana , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/fisiologia , Fermentação , Manipulação de Alimentos/métodosRESUMO
The spread of antibiotic-resistant pathogens has prompted the development of novel approaches to identify molecules that synergize with antibiotics to enhance their efficacy. This study aimed to investigate the effects of ten Essential Oils (EOs) on the activity of nine antibiotics in influencing growth and biofilm formation in Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The effects of the EOs alone and in combination with antibiotics on both bacterial growth and biofilm formation were analyzed by measuring the MIC values through the broth microdilution method and the crystal violet assay, respectively. All EOs inhibited the growth of E. coli (1.25 ≤ MIC ≤ 5 mg/mL) while the growth of P. aeruginosa and E. faecalis was only affected by EOs from Origanum vulgare, (MIC = 5 mg/mL) and O. vulgare (MIC = 1.25 mg/mL) and Salvia rosmarinus (MIC = 5 mg/mL), respectively. In E. coli, most EOs induced a four- to sixteen-fold reduction in the MIC values of ampicillin, ciprofloxacin, ceftriaxone, gentamicin, and streptomycin, while in E. faecalis such a reduction is observed in combinations of ciprofloxacin with C. nepeta, C. bergamia, C. limon, C. reticulata, and F. vulgare, of gentamicin with O. vulgare, and of tetracycline with C. limon and O. vulgare. A smaller effect was observed in P. aeruginosa, in which only C. bergamia reduced the concentration of tetracycline four-fold. EO-antibiotic combinations also inhibit the biofilm formation. More precisely, all EOs with ciprofloxacin in E. coli, tetracycline in P. aeruginosa, and gentamicin in E. faecalis showed the highest percentage of inhibition. Combinations induce up- and down-methylation of cytosines and adenines compared to EO or antibiotics alone. The study provides evidence about the role of EOs in enhancing the action of antibiotics by influencing key processes involved in resistance mechanisms such as biofilm formation and epigenetic changes. Synergistic interactions should be effectively considered in dealing with pathogenic microorganisms.
RESUMO
Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.
RESUMO
In the U.S., baby spinach is mostly produced in Arizona (AZ) and California (CA). Characterizing the impact of growing region on the bacterial quality of baby spinach can inform quality management practices in industry. Between December 2021 and December 2022, baby spinach was sampled after harvest and packaging for microbiological testing, including shelf-life testing of packaged samples that were stored at 4°C. Samples were tested to (i) determine bacterial concentration, and (ii) obtain and identify bacterial isolates. Packaged samples from the Salinas, CA, area (n = 13), compared to those from the Yuma, AZ, area (n = 9), had a significantly higher bacterial concentration, on average, by 0.78 log10 CFU/g (P < 0.01, based on aerobic, mesophilic plate count data) or 0.67 log10 CFU/g (P < 0.01, based on psychrotolerant plate count data); the bacterial concentrations of harvest samples from the Yuma and Salinas areas were not significantly different. Our data also support that an increase in preharvest temperature is significantly associated with an increase in the bacterial concentration on harvested and packaged spinach. A Fisher's exact test and linear discriminant analysis (effect size), respectively, demonstrated that (i) the genera of 2,186 bacterial isolates were associated (P < 0.01) with growing region and (ii) Pseudomonas spp. and Exiguobacterium spp. were enriched in spinach from the Yuma and Salinas areas, respectively. Our findings provide preliminary evidence that growing region and preharvest temperature may impact the bacterial quality of spinach and thus could inform more targeted strategies to manage produce quality. IMPORTANCE: In the U.S., most spinach is produced in Arizona (AZ) and California (CA) seasonally; typically, spinach is cultivated in the Yuma, AZ, area during the winter and in the Salinas, CA, area during the summer. As the bacterial quality of baby spinach can influence consumer acceptance of the product, it is important to assess whether the bacterial quality of baby spinach can vary between spinach-growing regions. The findings of this study provide insights that could be used to support region-specific quality management strategies for baby spinach. Our results also highlight the value of further evaluating the impact of growing region and preharvest temperature on the bacterial quality of different produce commodities.
Assuntos
Spinacia oleracea , Spinacia oleracea/microbiologia , Arizona , California , Estudos Longitudinais , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Microbiologia de AlimentosRESUMO
Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.
Assuntos
Microbioma Gastrointestinal , Hidroxiácidos , Microbioma Gastrointestinal/efeitos dos fármacos , Hidroxiácidos/metabolismo , Hidroxiácidos/farmacologia , Probióticos , Caproatos/metabolismo , Caproatos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Bactérias/classificação , Lactobacillaceae/metabolismo , Humanos , Ácidos Pentanoicos/metabolismoRESUMO
In this study, Gordonia sp. HS126-4N was employed for dibenzothiophene (DBT) biodesulfurization, tracked over 9 days using SERS. During the initial lag phase, no significant spectral changes were observed, but after 48 h, elevated metabolic activity was evident. At 72 h, maximal bacterial population correlated with peak spectrum variance, followed by stable spectral patterns. Despite 2-hydroxybiphenyl (2-HBP) induced enzyme suppression, DBT biodesulfurization persisted. PCA and PLS-DA analysis of the SERS spectra revealed distinctive features linked to both bacteria and DBT, showcasing successful desulfurization and bacterial growth stimulation. PLS-DA achieved a specificity of 95.5 %, sensitivity of 94.3 %, and AUC of 74 %, indicating excellent classification of bacteria exposed to DBT. SERS effectively tracked DBT biodesulfurization and bacterial metabolic changes, offering insights into biodesulfurization mechanisms and bacterial development phases. This study highlights SERS' utility in biodesulfurization research, including its use in promising advancements in the field.