Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172769, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670363

RESUMO

Water hypoxia and metal pollution are commonly co-existed in urbanized estuaries. This study focuses on the effect of an extended dissolved oxygen (DO) full-life dynamics (86 days) on metal behavior across the sediment-water interface through laboratory microcosms from two typical zones in Pearl River Estuary. Combining our time-series results of concentrations and fluxes, it showed that Co, Ni, and Zn consistently presented a release-precipitation-release trajectory with an oxic-hypoxic-anoxic-reoxic transition, characterized with highly variable behavior in the hypoxic-anoxic hotmoments. In parallel, changing DO dynamics significantly activated a repartitioning process of Co, Ni, and Zn among several species and elevated their risk in sediments, promoting the formation of more labile species in the 0-10 mm hotspots, where metals sensitively responded. Over DO transition, metal cycling was tightly co-related with Fe, Mn, and S elements. It was found that Mn was dominated in low oxygen-hypoxic period, but switched to S and Fe in anoxic stage, limiting sustained metal liberation to overlying water. Enlarging this experiment to practice, released Zn fluxes from sediments in hypoxic summer could contribute about ∼2.0% to their stocks in water column, while increase to 20% (1 m bottom water) in highly-stratified zones. This study has certain significance in understanding the long-term metal behavior and fate in estuarine regions, even lakes and reservoirs.

2.
Sci Total Environ ; 928: 172493, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621533

RESUMO

Manganese (Mn) is a vital micronutrient and participates in multiple biochemical reactions and enzyme catalytic activities. Its cycling is tightly connected with iron (Fe) and nitrogen (N). Although coastal sediments are recognized as an important source of dissolved Mn to marine waters, this contribution remains inadequately quantified. In the summer of 2019 and 2020, we investigated benthic fluxes of dissolved Mn, Fe and ammonia (NH4+) in the Changjiang Estuary and East China Sea shelf using the 224Ra/228Th disequilibrium approach. Our results showed that the availability of reactive Mn oxides (MnD) played a crucial role in sedimentary Mn regeneration, as revealed by the positive correlation (r = 0.75, P < 0.05) between Mn fluxes and MnD contents. In addition, the positive correlation (r = 0.80, P < 0.01) between the decomposition rates of sedimentary organic matter (NH4+ flux) and Mn fluxes suggested that the reduction of MnD was mainly driven by the organic carbon oxidation. Furthermore, NH4+ and Mn fluxes exhibited an exponential increase against the product of dissolved oxygen concentration (DO) and the amplification factor of sediment surface area (ξ). In this context, ξ represents the rate of bottom water DO pumped into the sediment via physical reworking and bio-irrigation. In contrast to the most efficient Fe released from sediment overlain by hypoxic waters (DO <62.5 µM), the maximum Mn flux (63.5 ± 9.4 mmol m-2 d-1) was observed at sediment with oxygenated bottom waters (DO = 158 µM). This implies that the regeneration of Mn was associated with a more permissive redox state compared to that of Fe. We further demonstrated that Mn flux was 1-2 orders of magnitude higher than those estimated through traditional methods. Therefore, coastal sediments may contribute more Mn to ocean waters than previously thought. The precise estimation of Mn release from coastal sediments holds critical significance for research on the global Mn budget.

3.
Glob Chang Biol ; 30(1): e16994, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916608

RESUMO

The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Nevertheless, how long-term deoxygenation affects macrobenthic communities, sediment biogeochemistry and their mutual feedback remains poorly understood. Here, we evaluate the response of the benthic assemblages and biogeochemical functioning to decreasing O2 concentrations along the persistent bottom-water dissolved O2 gradient of the Estuary and Gulf of St. Lawrence (QC, Canada). We report several of non-linear biodiversity and functional responses to decreasing O2 concentrations, and identify an O2 threshold that occurs at approximately at 63 µM. Below this threshold, macrobenthic community assemblages change, and bioturbation rates drastically decrease to near zero. Consequently, the sequence of electron acceptors used to metabolize the sedimentary organic matter is squeezed towards the sediment surface while reduced compounds accumulate closer (as much as 0.5-2.5 cm depending on the compound) to the sediment-water interface. Our results illustrate the capacity of bioturbating species to compensate for the biogeochemical consequences of hypoxia and can help to predict future changes in benthic ecosystems.


Les teneurs en O2 de l'océan mondial ont diminué progressivement au cours des dernières décennies, principalement en raison des activités humaines et du réchauffement climatique. Néanmoins, les effets à long terme de la désoxygénation sur les communautés macrobenthiques, la biogéochimie des sédiments et leurs interactions mutuelles demeurent mal compris. Dans cette étude, nous évaluons la réponse des assemblages de macrofaune benthiques et de la dynamique biogéochimique sédimentaire aux concentrations décroissantes d'O2 le long du gradient persistant d'O2 dissous dans l'eau de fond de l'estuaire et du golfe du Saint-Laurent (QC, Canada). Nous avons observé plusieurs réponses non linéaires de la biodiversité et de la dynamique biogéochimique sédimentaire face à la diminution de la concentration en O2 avec un seuil situé à environ 63 µM. En dessous de ce seuil, les assemblages de communautés macrobenthiques changent, et les taux de bioturbation diminuent drastiquement pour atteindre des niveaux presque nuls. En conséquence, la séquence des accepteurs d'électrons utilisés pour minéraliser la matière organique sédimentaire se contracte vers la surface du sédiment, tandis que les composés réduits s'accumulent plus près (jusqu'à 0.5 à 2.5 cm selon le composé) de l'interface sédiment-eau. Nos résultats illustrent la capacité des espèces bioturbatrices à compenser les conséquences biogéochimiques de la désoxygénation et peuvent contribuer à prédire les futurs changements dans les écosystèmes benthiques.


Assuntos
Ecossistema , Sedimentos Geológicos , Humanos , Sedimentos Geológicos/química , Biodiversidade , Água , Oceanos e Mares
4.
Glob Chang Biol ; 28(17): 5269-5282, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656817

RESUMO

Increasing responsiveness to anthropogenic climate change and the loss of global shellfish ecosystems has heightened interest in the carbon storage and sequestration potential of bivalve-dominated systems. While coastal ecosystems are dynamic zones of carbon transformation and change, current uncertainties and notable heterogeneity in the benthic environment make it difficult to ascertain the climate change mitigation capacity of ongoing coastal restoration projects aimed at revitalizing benthic bivalve populations. In this study we sought to distinguish between direct and indirect effects of subtidal green-lipped mussels (Perna canaliculus) on carbon cycling, and combined published literature with in-situ experiments from restored beds to create a carbon budget for New Zealand's shellfish restoration efforts. A direct summation of biogenic calcification, community respiration, and sediment processes suggests a moderate carbon efflux (+100.1 to 179.6 g C m-2  year-1 ) occurs as a result of recent restoration efforts, largely reflective of the heterotrophic nature of bivalves. However, an examination of indirect effects of restoration on benthic community metabolism and sediment dynamics suggests that beds achieve greater carbon fixation rates and support enhanced carbon burial compared to nearby sediments devoid of mussels. We discuss limitations to our first-order approximation and postulate how the significance of mussel restoration to carbon-related outcomes likely increases over longer timescales. Coastal restoration is often conducted to support the provisioning of many ecosystem services, and we propose here that shellfish restoration not be used as a single measure to offset carbon dioxide emissions, but rather used in tandem with other initiatives to recover a bundle of valued ecosystem services.


Assuntos
Bivalves , Ecossistema , Animais , Ciclo do Carbono , Sequestro de Carbono , Mudança Climática
5.
Sci Total Environ ; 779: 146314, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030236

RESUMO

The Mar Menor is a hypersaline coastal lagoon with salinity values ranging from 41.9 to 45.5. The system is subjected to a high anthropic pressure that causes an intense eutrophication process, followed by a recovery of the macrophyte meadows. This study focuses on the distribution of the main greenhouse gases (CO2, CH4 and N2O) and was carried out in the extreme seasonal conditions of winter and summer during the year 2018. Sediment-water-atmosphere exchanges and biochemical processes in the water column appeared to be the main factors to explain the variability of these gases. Dissolved Inorganic Carbon (DIC), CH4 and N2O benthic fluxes values obtained in this study, were of 91 ± 29 mmol m-2 d-1, 3.9 ± 1.9 µmol m-2 d-1 and -0.65 µmol m-2 d-1, respectively, along with an important seasonal variation observed, with an increase of DIC and CH4 benthic fluxes during the summer season. Mean values of partial pressure of CO2 (pCO2) in surface water were of 579 µatm in winter and 464 µatm in summer, therefore we can establish that the Mar Menor acts as a source of this gas emitting 3.3 ± 3.0 mmol CO2 m-2 d-1 to the atmosphere. In spite of this, the Mar Menor has a strong autotrophic behaviour partly due to the recovery of the macrophyte meadows, presenting an estimated NEP of 101 mmol m-2 d-1. Regarding to CH4, the mean fluxes to the atmosphere were of 8.0 ± 5.8 µmol m-2 d-1 and there was evidence of CH4 production in the water column that increased in summer. Last of all, in the case of N2O the system acts as a sink with values of -0.65 ± 0.5 µmol m-2 d-1, presenting an intake of N2O that is usually detected in pristine systems.

6.
Sci Total Environ ; 740: 140169, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927550

RESUMO

Hydrological extremes of unusually high or low river discharge may deeply affect the biogeochemistry of coastal lagoons, but the effects are poorly explored. In this study, microbial nitrogen processes were analyzed through intact core incubations and 15N-isotope addition at three sites in the eutrophic Sacca di Goro lagoon (Northern Adriatic Sea) both under high discharge (spring) and after prolonged low discharge (late-summer) of the main freshwater inputs. Under high discharge/nitrate load, denitrification was the leading process and there was no internal recycling. The site located at the mouth of the main freshwater input and characterized by low salinity exhibited the highest denitrification rate (up to 1150 ± 81 µmol N m-2 h-1), mostly sustained by nitrification stimulated by burrowing macrofauna. In contrast, we recorded high internal recycling under low discharge, when denitrification dropped at all sites due to low nitrate concentrations, reduced bioturbation and nitrification. The highest recycling was measured at the sites close to the sea entrance and characterized by high salinity and particularly at the clams cultivated area (up to 1003 ± 70 µmol N m-2 h-1). At this site, internal recycling was sustained by ammonification of biodeposits, bivalve excretion and dissimilatory nitrate reduction to ammonium (DNRA), which represented 30% of nitrate reduction. Flash floods and high nitrate loads may overwhelm the denitrification capacity of the lagoon due to the reduced residence time and to the saturation of microbial enzymatic activity, resulting in high transport of nitrate to the sea. Prolonged dry periods favor large internal recycling, due to a combination of high temperatures, low oxygen solubility and low bioturbation, which may prolong the extent of algal blooms with negative effects on lagoon biogeochemical services. We conclude that hydrological extremes, which are expected to become more frequent under climate change scenarios, strongly alter N cycling in coastal sediments.


Assuntos
Compostos de Amônio/análise , Animais , Desnitrificação , Sedimentos Geológicos , Hidrologia , Nitratos/análise , Nitrogênio/análise
7.
IEEE Sens J ; 20(3): 1509-1526, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158362

RESUMO

Eddy Correlation (EC) is a technique that can be used to measure transport of substances in aquatic ecosystems between bottom sediments and the overlying water (i.e. benthic fluxes). Based on high-speed, simultaneous, and co-located velocity and concentration measurements, EC has been successfully used in a variety of freshwater and marine settings to determine benthic fluxes of dissolved oxygen. Application to a larger range of compounds is limited, however, by the lack of suitable chemical sensors. Here, we describe FACT, a novel, high-speed, multi-function sensor created to expand the range of benthic fluxes that can be measured with EC. An optical fiber spectrofluorometer with a proximally located conductivity cell and thermistor, FACT enables benthic flux measurements of fluorescing compounds, such as fluorescent dissolved organic matter, as well as of heat and salinity which can be used as tracers for submarine groundwater discharge. The high bandwidth and open-beam geometry of the fluorescence sensor are particularly beneficial for EC measurements. FACT was integrated with a velocity sensor into a full EC system capable of simultaneous benthic flux measurements of fluorescing compounds, heat, and salinity. Tested in a laboratory tank, fluxes measured by all three sensors were found to track each other as well as compare favorably with expected values. Furthermore, the ability to measure fluxes of multiple substances both extends the applicability of EC to a wider range of natural sites, and can provide insight into issues of sensing volume and time responses as they affect the application of EC to natural waters.

8.
Front Microbiol ; 11: 612700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584578

RESUMO

The interaction between microbial communities and benthic algae as nitrogen (N) regulators in poorly illuminated sediments is scarcely investigated in the literature. The role of sediments as sources or sinks of N was analyzed in spring and summer in sandy and muddy sediments in a turbid freshwater estuary, the Curonian Lagoon, Lithuania. Seasonality in this ecosystem is strongly marked by phytoplankton community succession with diatoms dominating in spring and cyanobacteria dominating in summer. Fluxes of dissolved gas and inorganic N and rates of denitrification of water column nitrate (Dw) and of nitrate produced by nitrification (Dn) and sedimentary features, including the macromolecular quality of organic matter (OM), were measured. Shallow/sandy sites had benthic diatoms, while at deep/muddy sites, settled pelagic microalgae were found. The OM in surface sediments was always higher at muddy than at sandy sites, and biochemical analyses revealed that at muddy sites the OM nutritional value changed seasonally. In spring, sandy sediments were net autotrophic and retained N, while muddy sediments were net heterotrophic and displayed higher rates of denitrification, mostly sustained by Dw. In summer, benthic oxygen demand increased dramatically, whereas denitrification, mostly sustained by Dn, decreased in muddy and remained unchanged in sandy sediments. The ratio between denitrification and oxygen demand was significantly lower in sandy compared with muddy sediments and in summer compared with spring. Muddy sediments displayed seasonally distinct biochemical composition with a larger fraction of lipids coinciding with cyanobacteria blooms and a seasonal switch from inorganic N sink to source. Sandy sediments had similar composition in both seasons and retained inorganic N also in summer. Nitrogen uptake by microphytobenthos at sandy sites always exceeded the amount loss via denitrification, and benthic diatoms appeared to inhibit denitrification, even in the dark and under conditions of elevated N availability. In spring, denitrification attenuated N delivery from the estuary to the coastal area by nearly 35%. In summer, denitrification was comparable (~100%) with the much lower N export from the watershed, but N loss was probably offset by large rates of N-fixation.

9.
Sensors (Basel) ; 19(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185640

RESUMO

Marine environments are currently subject to strong ecological pressure due to local and global anthropic stressors, such as pollutants and atmospheric inputs, which also cause ocean acidification and warming. These strains can result in biogeochemical cycle variations, environmental pollution, and changes in benthic-pelagic coupling processes. Two new devices, the Amerigo Lander and the Automatic Benthic Chamber (CBA), have been developed to measure the fluxes of dissolved chemical species between sediment and the water column, to assess the biogeochemical cycle and benthic-pelagic coupling alterations due to human activities. The Amerigo Lander can operate in shallow as well as deep water (up to 6000 m), whereas the CBA has been developed for the continental shelf (up to 200 m). The lander can also be used to deploy a range of instruments on the seafloor, to study the benthic ecosystems. The two devices have successfully been tested in a variety of research tasks and environmental impact assessments in shallow and deep waters. Their measured flux data show good agreement and are also consistent with previous data.

10.
Sci Total Environ ; 675: 247-259, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31030132

RESUMO

The seasonal dynamics and diagenesis of trace metals at two contrasting coastal sites were studied to determine the mechanism that drove the diffusive release of trace metals from sediments in the Changjiang Estuary. Porewater trace metal concentrations were 53.4-4829 nM for Zn, 11.0-344 nM for Cu, 7.75-221 nM for Cr, 2.71-61.1 nM for Co, 0.822-42.7 nM for Pb and 0.037-4.22 nM for Cd. The concentrations and profiles of trace metals in the porewater and solid phase displayed obvious regional and seasonal variations. This variation was mainly reflected in the surface layer and the depth of the suboxic and anoxic layers. Regionally, surface porewater trace metal concentrations in the seasonal hypoxic region were higher than those in the aerobic region due to changes in the redox conditions being beneficial to the release of trace metals. Seasonally, surface porewater trace metal concentrations decreased in summer compared to spring due to their removal by forming metal sulfides in summer. Solid profiles of the trace metals supported their dynamic variations in the porewater. The partition coefficient suggested that the formation of Fe/Mn (hydr)oxides was effective for the removal of trace metal in oxidizing condition, while the formation of sulfides was conducive to the removal of trace metals in reducing condition. The combination of porewater with solid phase data suggested that the dynamics of Cu, Zn, Cr and Co were mainly controlled by Fe and Mn diagenesis, the dynamics of Cd were affected by S cycling, and the dynamics of Pb were disturbed by anthropogenic inputs and benthic organism activities. Estimation of benthic fluxes indicated that sediments were an important source of trace metals in the water column. The contributions of trace metals by sediments to the water column of the Changjiang Estuary were only one order of magnitude lower than those by riverine fluxes.

11.
Environ Sci Pollut Res Int ; 25(27): 26887-26902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006813

RESUMO

One of the main environmental issues affecting coastal marine environments is the accumulation of contaminants in sediments and their potential mobility. In situ benthic chamber experiments were conducted at two tourist ports (marinas) located in the Gulf of Trieste, one in Slovenia and one in Italy. The aim was to understand if and where recycling at the sediment-water interface (SWI) may affect metal(loid)s. Short sediment cores were also collected near the chamber to investigate the solid (sediments) and dissolved phases (porewaters). Both diffusive and benthic fluxes were estimated to elucidate the release of metal(loid)s at the SWI. Total element concentrations and their labile fractions were determined in sediments to quantify their potential mobility. The total element contents were found to be two orders of magnitude higher in the Italian marina than in the Slovenian one, especially for Hg (up to 1000 mg kg-1), whereas the labile fraction was scarce or null. The opposite occurred in the Slovenian marina. Metal(loid)s in porewaters showed a clear diagenetic sequence and a close dependence upon the suboxic/anoxic conditions of sediments. The results suggest that although the sediments of the Italian marina exhibit the highest total metal(loid) concentration, these elements are scarcely remobilisable. Conversely, in the Slovenian marina, sediments seem to be comparatively more prone to release metal(loid)s at the SWI.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/análise , Poluentes Químicos da Água/análise , Itália , Mercúrio/análise , Eslovênia , Água
12.
J Environ Sci (China) ; 68: 5-23, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29908744

RESUMO

The Marano and Grado Lagoon is well known for being contaminated by mercury (Hg) from the Idrija mine (Slovenia) and the decommissioned chlor-alkali plant of Torviscosa (Italy). Experimental activities were conducted in a local fish farm to understand Hg cycling at the sediment-water interface. Both diffusive and benthic fluxes were estimated in terms of chemical and physical features. Mercury concentration in sediments (up to 6.81µg/g) showed a slight variability with depth, whereas the highest methylmercury (MeHg) values (up to 10ng/g) were detected in the first centimetres. MeHg seems to be produced and stored in the 2-3cm below the sediment-water interface, where sulphate reducing bacteria activity occurs and hypoxic-anoxic conditions become persistent for days. DMeHg in porewaters varied seasonally (from 0.1 and 17% of dissolved Hg (DHg)) with the highest concentrations in summer. DHg diffusive effluxes higher (up to 444ng/m2/day) than those reported in the open lagoon (~95ng/m2/day), whereas DMeHg showed influxes in the fish farm (up to -156ng/m2/day). The diurnal DHg and DMeHg benthic fluxes were found to be higher than the highest summer values previously reported for the natural lagoon environment. Bottom sediments, especially in anoxic conditions, seem to be a significant source of MeHg in the water column where it eventually accumulates. However, net fluxes considering the daily trend of DHg and DMeHg, indicated possible DMeHg degradation processes. Enhancing water dynamics in the fish farm could mitigate environmental conditions suitable for Hg methylation.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Aquicultura , Peixes/metabolismo , Sedimentos Geológicos/química , Itália , Compostos de Metilmercúrio , Eslovênia
13.
Geochim Cosmochim Acta ; 222: 569-583, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29515259

RESUMO

In aquatic environments, sediments are the main location of mercury methylation. Thus, accurate quantification of methylmercury (MeHg) fluxes at the sediment-water interface is vital to understanding the biogeochemical cycling of mercury, especially the toxic MeHg species, and their bioaccumulation. Traditional approaches, such as core incubations, are difficult to maintain at in-situ conditions during assays, leading to over/underestimation of benthic fluxes. Alternatively, the 224Ra/228Th disequilibrium method for tracing the transfer of dissolved substances across the sediment-water interface, has proven to be a reliable approach for quantifying benthic fluxes. In this study, the 224Ra/228Th disequilibrium and core incubation methods were compared to examine the benthic fluxes of both 224Ra and MeHg in salt marsh sediments of Barn Island, Connecticut, USA from May to August, 2016. The two methods were comparable for 224Ra but contradictory for MeHg. The radiotracer approach indicated that sediments were always the dominant source of both total mercury (THg) and MeHg. The core incubation method for MeHg produced similar results in May and August, but an opposite pattern in June and July, which suggested sediments were a sink of MeHg, contrary to the evidence of significant MeHg gradients between overlying water and porewater at the sediment-water interface. The potential reasons for such differences are discussed. Overall, we conclude that the 224Ra/228Th disequilibrium approach is preferred for estimating the benthic flux of MeHg and that sediment is indeed an important MeHg source in this marshland, and likely in other shallow coastal waters.

14.
Environ Pollut ; 219: 656-662, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27376989

RESUMO

In aquatic ecosystems, ecological processes such as organic matter mineralization and nutrient cycling are regulated by benthic O2 in sediments, and application of in situ techniques in field environments has the potential to better define the links between O2 dynamics and the unique biogeochemical phenomena occurring in these regions. The effects of benthic O2 on sediment nutrients release were identified on the basis of field specific observations conducted over one and a half years at Taihu Lake. Sediment dredging (SD) practices have sharply reworked the benthic boundary oxidation layer, and the oxygen penetration depth (OPD) in the SD responded as expected to the new-born surface, increasing immediately (7.5 ± 0.8 - 10.5 ± 0.6 mm) after dredging, then further increasing with an unusually high heterogeneity when a significant submersed macrophytes (SM) coverage of about 40% was implemented. Multiple correlation analysis revealed that OPD was responsible for PO43- and NH4+ release. A lower benthic oxygen flux was immediately observed in dredging-related sediments in the case of dredging compared to SM or the control (CK), which suggested that oxygen demand is low in the uppermost sediments because of the degradable fresh organic carbon removal. SD and SDSM implementation was most successful at continuously reducing the size of PO43- released from sediments over one and a half years, and a significant seasonal-dependent release was also observed. The direction of flux was consistent among SD and SDSM, suggesting the potential to reduce internal PO43- release even further with the invasion of SM communities. Our results indicated that ecological engineering practices could alleviate internal nutrient loads from the contaminated bottom sediment, which was probably in positive response to benthic oxygen changes.


Assuntos
Sedimentos Geológicos/química , Oxigênio/metabolismo , Fitoplâncton/metabolismo , China , Lagos/química , Oxirredução , Oxigênio/análise
15.
Environ Sci Pollut Res Int ; 23(13): 12566-81, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26154044

RESUMO

In the shallow environment, the nutrient and carbon exchanges at the sediment-water interface contribute significantly to determine the trophic status of the whole water column. The intensity of the allochthonous input in a coastal environment subjected to strong anthropogenic pressures determines an increase in the benthic oxygen demand leading to depressed oxygen levels in the bottom waters. Anoxic conditions resulting from organic enrichment can enhance the exchange of nutrients between sediments and the overlying water. In the present study, carbon and nutrient fluxes at the sediment-water interface were measured at two experimental sites, one highly and one moderately contaminated, as reference point. In situ benthic flux measurements of dissolved species (O2, DIC, DOC, N-NO3 (-), N-NO2 (-), N-NH4 (+), P-PO4 (3-), Si-Si(OH)4, H2S) were conducted using benthic chambers. Furthermore, undisturbed sediment cores were collected for analyses of total and organic C, total N, and biopolymeric carbon (carbohydrates, proteins, and lipids) as well as of dissolved species in porewaters and supernatant in order to calculate the diffusive fluxes. The sediments were characterized by suboxic to anoxic conditions with redox values more negative in the highly contaminated site, which was also characterized by higher biopolymeric carbon content (most of all lipids), lower C/N ratios and generally higher diffusive fluxes, which could result in a higher release of contaminants. A great difference was observed between diffusive and in situ benthic fluxes suggesting the enhancing of fluxes by bioturbation and the occurrence of biogeochemically important processes at the sediment-water interface. The multi-contamination of both inorganic and organic pollutants, in the sediments of the Mar Piccolo of Taranto (declared SIN in 1998), potentially transferable to the water column and to the aquatic trophic chain, is of serious concern for its ecological relevance, also considering the widespread fishing and mussel farming activities in the area.


Assuntos
Carbono/química , Sedimentos Geológicos/química , Oxigênio/química , Poluentes Químicos da Água/química , Água/química , Itália
16.
Environ Sci Pollut Res Int ; 23(13): 12582-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26336847

RESUMO

In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment-water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 µg m(-2) day(-1)) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Itália , Mercúrio/análise , Oligoelementos/análise
17.
Sci Total Environ ; 461-462: 416-29, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747557

RESUMO

The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH<4), the reservoir accumulated a high amount of autochthonous organic matter (up to 12 wt.%). Oxygen was consumed in 1mm of sediment due to organic matter and sulfide oxidation. Below the oxic layer, Fe(III) and sulfate reduction peaks developed concomitantly and the resulting Fe(II) and S(II) were removed as sulfides and probably as S linked to organic matter. During the oxic season, schwertmannite precipitated in the water column and was redissolved in the organic-rich sediment, after which iron and arsenic diffused upwards again to the water column. The flux of precipitates was found to be two orders of magnitude higher than the aqueous one, and therefore the sediment acted as a sink for As and Fe. Trace metals (Cu, Zn, Cd, Pb, Ni, Co) and Al always diffused from the reservoir water and were incorporated into the sediments as sulfides and oxyhydroxides, respectively. In spite of the fact that the benthic fluxes estimated for trace metal and Al were much higher than those reported for lake and marine sediments, they only accounted for less than 10% of their total inventory dissolved in the column water.


Assuntos
Sedimentos Geológicos/análise , Fenômenos Geológicos , Água Subterrânea/análise , Lagos , Metais Pesados/química , Poluentes Químicos da Água/química , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Mineração , Estações do Ano , Espanha , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA