Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Water Res ; 267: 122479, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39369504

RESUMO

A novel coccus Thiothrix-related polyphosphate-accumulating organism (PAO) was enriched in an acetate-fed enhanced biological phosphorus removal (EBPR) system. High EBPR performance was achieved for an extended period (>100 days). A high-quality draft genome (completeness 97.2 %, contamination 3.26 %) was retrieved, representing a novel Thiothrix species (with similarity<93.2 % to known Thiothrix species), and was denoted as 'Candidatus Thiothrix phosphatis SCUT-1'. Its acetate uptake rate (6.20 mmol C/g VSS/h) surpassed most Ca. Accumulibacter and known glycogen-accumulating organisms (GAOs), conferring their predominance in the acetate-fed system. Metatranscriptomic analysis suggested that Ca. Thiothrix phosphatis SCUT-1 employed both low- and high-affinity pathways for acetate activation, and both the conventional (PhaABC) pathway and the fatty acid ß-oxidation pathway for PHA synthesis; additionally, a much more efficient FAD-dependent malate: quinone oxidoreductase (MQO) were encoded and employed than the traditional malate dehydrogenase (MDH) to oxidize malate to oxaloacetate in the TCA and glyoxylate cycle, collectively contributing to a higher acetate utilization and processing rate of this microorganism. Batch tests further demonstrated the versatile ability of this PAO in using VFA (acetate, propionate, and butyrate), lactate, amino acids (aspartate and glutamate), and glucose as carbon sources for EBPR, showing a partially overlapped but unique ecological niche of this microorganism comparing to Ca. Accumulibacter and known GAOs. A metabolic model was built for Ca. Thiothrix phosphatis SCUT-1 using the above-mentioned carbon sources for EBPR. Overall, this study represents the first comprehensive characterization of the physiology and metabolic characteristics of representative coccus Thiothrix-related PAOs, which are expected to provide new insights into PAO microbiology in EBPR systems.

2.
Bioresour Technol ; 409: 131267, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142417

RESUMO

Membrane aerated biofilm reactor (MABR) is challenged by biofilm thickness control and phosphorus removal. Air scouring aided by computational fluid dynamics (CFD) was employed to detach outer biofilm in sequencing batch MABR treating low C/N wastewater. Biofilm with 177-285 µm thickness in cycle 5-15 achieved over 85 % chemical oxygen demand (COD) and total inorganic nitrogen (TIN) removals at loading rate of 13.2 gCOD/m2/d and 2.64 gNH4+-N/m2/d. Biofilm rheology measurements in cycle 10-25 showed yield stress against detachment of 2.8-7.4 Pa, which were equal to CFD calculated shear stresses under air scouring flowrate of 3-9 L/min. Air scouring reduced effluent NH4+-N by 10 % and biofilm thickness by 78 µm. Intermittent aeration (4h off, 19.5h on) and air scouring (3 L/min, 30 s before settling) in one cycle achieved COD removal over 90 %, TIN and PO43--P removals over 80 %, showing great potential for simultaneous carbon, nitrogen and phosphorus removals.


Assuntos
Biofilmes , Reatores Biológicos , Carbono , Hidrodinâmica , Membranas Artificiais , Nitrogênio , Fósforo , Ar , Análise da Demanda Biológica de Oxigênio , Purificação da Água/métodos , Simulação por Computador , Reologia , Águas Residuárias/química
3.
Bull Environ Contam Toxicol ; 113(2): 13, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012472

RESUMO

Tetracycline and copper ion are common pollutants in wastewater, and the effects of mixed pollutants on microorganisms in wastewater biological treatment have been less studied. In order to reveal the effects of mixed pollutants of tetracycline and copper ion on the microorganisms during the biological phosphorus removal, three ratios of tetracycline and copper ions were designed by the direct equipartition ray method. The relative abundance and diversity of microbial community were investigated, and the microbial interactions were revealed through microbiological methods. The results demonstrated that, for three different ratios, the inhibitory effect of specific phosphorus uptake rate became more significant with the increase of the tetracycline-copper ions concentration and the reaction time. The microbial community decreased with the increase of the proportion of tetracycline in different ratios. The relative abundance of Acinetobacter decreased with the increase of the proportion of tetracycline, while the relative abundance of Ca.Competibacter was higher under the conditions of low mixtures concentrations. Positive interactions and symbiotic relationships among microorganisms were predominant for three different ratios. However, as the proportion of tetracycline increased, the community structure of microorganisms shifted from phosphate-accumulating organisms to glycogen accumulating organisms and denitrifying bacteria. This study can provide a reference for the effect of mixed pollutants on microorganisms and the mechanism of wastewater treatment.


Assuntos
Cobre , Fósforo , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água , Tetraciclina/farmacologia , Cobre/toxicidade , Águas Residuárias/química , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo
4.
Environ Sci Technol ; 58(29): 12989-12999, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38982970

RESUMO

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.


Assuntos
Carbono , Aprendizado de Máquina , Nitrogênio , Fósforo , Enxofre , Águas Residuárias , Fósforo/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Águas Residuárias/química , Carbono/metabolismo , Biotransformação , Ecossistema , Eliminação de Resíduos Líquidos/métodos , Desnitrificação
5.
Water Res ; 259: 121865, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851111

RESUMO

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.


Assuntos
Fósforo , Processos Fototróficos , Fósforo/metabolismo , Betaproteobacteria/metabolismo , Rhodocyclaceae/metabolismo , Luz , Poli-Hidroxialcanoatos/metabolismo , Glicogênio/metabolismo
6.
Bioresour Technol ; 402: 130789, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703961

RESUMO

Wastewater phosphorus removal achieved biologically is associated with the process known as enhanced biological phosphorus removal (EBPR). In contrast with canonical EBPR operations that employ alternating anaerobic-aerobic conditions and achieve asynchronous carbon and phosphorus storage, research herein focused on phosphorus removal achieved under aerobic conditions synchronously with volatile fatty acid (VFA) storage as polyhydroxybutyrate-co-valerate (PHBV). 90.3 ± 3.4 % soluble phosphorus removal was achieved from dairy manure fermenter liquor; influent and effluent concentrations were 38.6 ± 9.5 and 3.7 ± 0.8 mgP/L, respectively. Concurrently, PHBV yield ranged from 0.17 to 0.64 mgCOD/mgCOD, yielding 147-535 mgCODPHBV/L. No evidence of EBPR mechanisms was observed, nor were canonical phosphorus accumulating organisms present; additionally, the polyphosphate kinase gene was not present in the microbial biomass. Phosphorus removal was primarily associated with biomass growth and secondarily with biomass complexation. Results demonstrate that concurrent PHBV synthesis and phosphorus recovery can be achieved microbially under aerobic dynamic feeding conditions when fed nutrient rich wastewater.


Assuntos
Indústria de Laticínios , Esterco , Fósforo , Poliésteres , Aerobiose , Poliésteres/metabolismo , Fermentação , Animais , Reatores Biológicos , Biomassa , Biodegradação Ambiental , Ácidos Graxos Voláteis/metabolismo , Bovinos , Poli-Hidroxibutiratos
7.
ISME Commun ; 4(1): ycae049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38808122

RESUMO

Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.

8.
Sci Total Environ ; 927: 172313, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593871

RESUMO

The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.


Assuntos
Reatores Biológicos , Cianobactérias , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Reatores Biológicos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Aerobiose
9.
Water Res ; 253: 121261, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367373

RESUMO

Fully anoxic suspended growth treatment of domestic wastewater is rarely performed in practice at large scale. However, recent advances in membrane aerated biofilm reactor (MABR) technology can enable the "hybrid" concept that couples nitrification in the MABR with anoxic suspended growth for biological nitrogen removal. Small scale sequencing batch reactors were constructed to compare high-rate anoxic metabolization of influent carbon and biological phosphorus removal side-by-side with a conventional aerated system in a low-strength domestic wastewater (COD/TN ratio of approximately 6). Little differences existed in the oxidation of soluble readily biodegradable organic material between the two systems, but hydrolysis of particulate and colloidal organic matter in the anoxic reactor over a range of solid retention times was 60 % of the aerobic reactor. Reduced hydrolysis limited the amount of carbon available to ferment to volatile fatty acid (VFA), adversely impacting anoxic biological phosphorus removal (bio-P) process rates, and ortho-P removal performance was diminished by more than half at equivalent SRTs. At optimal growth conditions, i.e., an SRT of approximately 8 days and with supplementary VFA, ortho-P removal from the influent averaged roughly 75 %. Experimentation with supplemented acetic acid showed reduced anoxic metabolic efficiency, quantified via a P/O ratio of 0.90 versus 1.7 for the aerobic system, although overall anoxic bio-P removal demonstrably increased with external carbon.


Assuntos
Fósforo , Águas Residuárias , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Nitrificação , Carbono , Reatores Biológicos , Nitrogênio/metabolismo , Desnitrificação
10.
Water Res ; 253: 121315, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382289

RESUMO

The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.


Assuntos
Microalgas , Esgotos , Esgotos/química , Fósforo , Reatores Biológicos/microbiologia , Fosfatos , Bactérias , Nitrogênio , Carbono
11.
mSystems ; 9(3): e0118823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415636

RESUMO

Members of the "Candidatus Accumulibacter" genus are widely studied as key polyphosphate-accumulating organisms (PAOs) in biological nutrient removal (BNR) facilities performing enhanced biological phosphorus removal (EBPR). This diverse lineage includes 18 "Ca. Accumulibacter" species, which have been proposed based on the phylogenetic divergence of the polyphosphate kinase 1 (ppk1) gene and genome-scale comparisons of metagenome-assembled genomes (MAGs). Phylogenetic classification based on the 16S rRNA genetic marker has been difficult to attain because most "Ca. Accumulibacter" MAGs are incomplete and often do not include the rRNA operon. Here, we investigate the "Ca. Accumulibacter" diversity in pilot-scale treatment trains performing BNR under low dissolved oxygen (DO) conditions using genome-resolved metagenomics. Using long-read sequencing, we recovered medium- and high-quality MAGs for 5 of the 18 "Ca. Accumulibacter" species, all with rRNA operons assembled, which allowed a reassessment of the 16S rRNA-based phylogeny of this genus and an analysis of phylogeny based on the 23S rRNA gene. In addition, we recovered a cluster of MAGs that based on 16S rRNA, 23S rRNA, ppk1, and genome-scale phylogenetic analyses do not belong to any of the currently recognized "Ca. Accumulibacter" species for which we propose the new species designation "Ca. Accumulibacter jenkinsii" sp. nov. Relative abundance evaluations of the genus across all pilot plant operations revealed that regardless of the operational mode, "Ca. A. necessarius" and "Ca. A. propinquus" accounted for more than 40% of the "Ca. Accumulibacter" community, whereas the newly proposed "Ca. A. jenkinsii" accounted for about 5% of the "Ca. Accumulibacter" community.IMPORTANCEOne of the main drivers of energy use and operational costs in activated sludge processes is the amount of oxygen provided to enable biological phosphorus and nitrogen removal. Wastewater treatment facilities are increasingly considering reduced aeration to decrease energy consumption, and whereas successful BNR has been demonstrated in systems with minimal aeration, an adequate understanding of the microbial communities that facilitate nutrient removal under these conditions is still lacking. In this study, we used genome-resolved metagenomics to evaluate the diversity of the "Candidatus Accumulibacter" genus in pilot-scale plants operating with minimal aeration. We identified the "Ca. Accumulibacter" species enriched under these conditions, including one novel species for which we propose "Ca. Accumulibacter jenkinsii" sp. nov. as its designation. Furthermore, the MAGs obtained for five additional "Ca. Accumulibacter" species further refine the phylogeny of the "Ca. Accumulibacter" genus and provide new insight into its diversity within unconventional biological nutrient removal systems.


Assuntos
Betaproteobacteria , Metagenoma , RNA Ribossômico 16S/genética , Metagenoma/genética , Filogenia , Águas Residuárias , Fósforo
12.
Environ Sci Ecotechnol ; 21: 100387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38322240

RESUMO

Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.

13.
Sci Total Environ ; 915: 169957, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242446

RESUMO

This study developed a two-stage process, including Tetrasphaera-dominated enhanced biological phosphorus-removal (EBPR(T)) sequencing batch reactor (SBR), followed by sulfur autotrophic denitrification (SADN) SBR, to achieve advanced nutrients removal from low VFAs wastewater. The removal efficiencies of nitrogen and phosphorus (PO43--P) reached 99 % with effluent PO43--P and total inorganic nitrogen (TIN) below 0.5 mg/L and 1 mg/L in EBPR(T) and SADN SBR, respectively. Mechanism analysis indicated that as increasing drainage ratio and complex carbon sources, free amino acids, glycogen, and PHA served as the endogenous carbon sources of Tetrasphaera to store energy. SADN contributed to approximately 80 % of nitrogen removal. DNA and cDNA results indicated Tetrasphaera was shifted from clade 2 to clade 1 after increasing the drainage ratio and the complexity of the carbon source, and Tetrasphaera (50.95 %) and Ca. Accumulibacter (9.12 %) were the most important functional microorganisms synergized to remove phosphorus at the transcriptional level in EBPR(T). Thiobacillus (45.97 %) and Sulfuritalea (9.24 %) were the dominant sulfur autotrophic denitrifiers at gene and transcriptional level in SADN. The results suggested that the EBPR(T) - SADN SBRs have great nutrient removal performance in treating low VFAs wastewater without additional carbon sources.


Assuntos
Fósforo , Águas Residuárias , Fósforo/metabolismo , Desnitrificação , Reatores Biológicos , Nutrientes , Carbono , Enxofre , Nitrogênio/metabolismo , Esgotos
14.
Sci Total Environ ; 912: 168952, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043807

RESUMO

Enhanced biological phosphorus removal (EBPR) is an effective process for phosphorus removal from wastewater. In this study, two lab-scale sequencing batch reactors (SBR) were used to perform EBPR process, in which genus Propioniciclava was unexpectedly accumulated and its relative abundance was over 70 %. A series of tests were conducted to explore the role of Propioniciclava in the two EBPR systems. The two systems performed steadily throughout the study, and the phosphorus removal efficiencies were 96.6 % and 93.5 % for SBR1 and SBR2, respectively. The stoichiometric analysis related to polyphosphate accumulating organisms (PAOs) indicated that polyphosphate accumulating metabolism (PAM) was achieved in the anaerobic phase. It appeared that the Propioniciclava-dominated systems could not perform denitrifying phosphorus removal. Instead, phosphorus was released under anoxic conditions without carbon sources. According to the genomic information from Integrated Microbial Genomes (IMG) database, Propioniciclava owns ppk1, ppk2 and ppx genes that are associated with phosphorus release and uptake functions. By phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) analysis, the abundance of genes related to phosphorus metabolism was much higher than that of genes related to denitrification. Therefore, Propioniciclava was presumed to be a potential PAO without denitrifying phosphorus uptake function. In addition to Propioniciclava, Tessaracoccus and Thiothrix were also enriched in both systems. Overall, this study proposes a novel potential PAO and broadens the understanding of EBPR microbial communities.


Assuntos
Fósforo , Polifosfatos , Polifosfatos/metabolismo , Fósforo/metabolismo , Filogenia , Águas Residuárias , Transporte Biológico , Reatores Biológicos , Esgotos
15.
Sci Total Environ ; 912: 168898, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016545

RESUMO

Mainstream P-recovery can help wastewater treatment plants (WWTPs) to effectively maintain good enhanced biological phosphorus removal (EBPR) while helping to recover P. In this study, a pilot-scale anaerobic-anoxic-aerobic (A2O) process was operated for simultaneous COD/N/P removal and P-recovery under different operational conditions. The operation with conventional extraction of waste activated sludge (WAS) from the aerobic reactor was compared to the mainstream P-recovery strategy of WAS extraction from the anaerobic reactor. Successful nutrient removal was obtained for both scenarios, but the anaerobic WAS extraction results improved polyphosphate accumulating organisms (PAOs) activity by increasing almost 27 % P concentration in the anaerobic reactor. WAS fermentation was also evaluated, showing that anaerobic WAS required only 3 days to reach a high P concentration, while the aerobic WAS fermentation required up to 7 days. The fermentation process increased the amount of soluble P available for precipitation from 24.4 % up to 51.6 % in the fermented anaerobic WAS scenario. Results obtained by precipitation modelling of these streams showed the limitations for struvite precipitation due to Ca2+ interference and Mg2+ and NH4+ as limiting species. The optimum precipitation scenario showed that P-recovery could reach up to 51 % of the input P, being 90 % struvite.


Assuntos
Reatores Biológicos , Esgotos , Humanos , Anaerobiose , Estruvita , Hipóxia , Fósforo , Eliminação de Resíduos Líquidos/métodos
16.
Bioresour Technol ; 393: 130048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980947

RESUMO

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Assuntos
Actinobacteria , Actinomycetales , Glucose , Glucose/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Polifosfatos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Reatores Biológicos , Esgotos
17.
J Environ Manage ; 351: 119839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104464

RESUMO

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Assuntos
Chlorella , Microbiota , Esgotos , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nutrientes
18.
Sci Total Environ ; 913: 169724, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160817

RESUMO

Feng et al. (2020) developed a simple, nondestructive, and cost-effective method to quantify polyphosphate (poly-P) in poly-P-accumulating organism (PAO)-enriched sludge samples through 30-h anaerobic exposure to 1 % (w/v) ethylenediaminetetraacetic acid (EDTA). This study optimized the N/P ratio (∼2) of the PAO culture medium in order to provide excess P for poly-P formation in PAO cells. Subsequently, the fluorescence microscopic observation of stained cells confirmed that Corynebacterium glutamicum was a PAO species capable of heterotrophic nitrification. Finally, this study reevaluated the accuracy and specificity of the EDTA-based quantification method, using two confirmed PAO biomass, three confirmed non-PAO biomass, and two sludge samples. The 1 % (w/v) EDTA treatment appears destructive to non-PAO cells, causes the release of other P forms, and is not effective for all PAO species. Under the conditions, the actual P release amount should be calculated by subtracting approximately 8 mg P g-1 total suspended solids from the determination. The amounts of P released from sludge samples was determined not only by the PAO fractions described by Feng et al. but also by PAO community structure and sludge P content.


Assuntos
Polifosfatos , Esgotos , Esgotos/microbiologia , Ácido Edético , Fósforo , Reatores Biológicos/microbiologia
19.
Water Res ; 247: 120776, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898002

RESUMO

Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly­hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.


Assuntos
Glucose , Esgotos , Reatores Biológicos , Polifosfatos/metabolismo , Fósforo/metabolismo , Lactatos
20.
Water Res ; 246: 120713, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839225

RESUMO

Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.


Assuntos
Betaproteobacteria , Fósforo , Fósforo/metabolismo , Fermentação , Prótons , Reatores Biológicos , Betaproteobacteria/metabolismo , Polifosfatos/metabolismo , Lactatos/metabolismo , Alanina , Succinatos/metabolismo , Carbono/metabolismo , Acetatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA