Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(8): 715, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980507

RESUMO

The study explores the aftermath of a wastewater reservoir failure in a phosphate fertilizer industry, resulting in the release of acidic water containing phosphorus and sulfate compounds into the Ashalim stream's Nature Reserve in the Judean desert, which affected the soil surface biological crusts (biocrusts) layer. The study aims to examine contamination effects on biocrusts over 3 years at two research sites along the stream, compare effects between contaminated sites, assess rehabilitation treatments, and examine their impact on soil characteristics. Hypotheses suggest significant damage to biocrusts due to acidic water flow, requiring human intervention for accelerated restoration. The results indicate adverse effects on biocrust properties, risking its key role in the desert ecosystem. The biocrust layer covering the stream's ground surface suffered significant physical, chemical, and biological damage due to exposure to industrial process effluents. However, soil enrichment treatments, including biocrust components and organic material, show promising effects on biocrust recovery.


Assuntos
Clima Desértico , Monitoramento Ambiental , Solo , Solo/química , Poluentes do Solo/análise , Fertilizantes , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Genes (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927718

RESUMO

Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Dessecação , Briófitas/genética , Genoma de Planta
3.
Microb Ecol ; 87(1): 69, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730059

RESUMO

Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.


Assuntos
Cianobactérias , Congelamento , Microbiologia do Solo , Solo , Solo/química , Cianobactérias/metabolismo , Cianobactérias/química , Carbonatos/química , Carbonatos/metabolismo , Ecossistema , Sporosarcina/metabolismo , Sporosarcina/crescimento & desenvolvimento
4.
Front Microbiol ; 15: 1236554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725684

RESUMO

Drylands soils worldwide are naturally colonized by microbial communities known as biocrusts. These soil microbiomes render important ecosystem services associated with soil fertility, water holding capacity, and stability to the areas they cover. Because of the importance of biocrusts in the global cycling of nutrients, there is a growing interest in describing the many microbial configurations these communities display worldwide. However, comprehensive 16S rRNA genes surveys of biocrust communities do not exist for much of the planet: for example, in the continents of South America and the northern part of Africa. The absence of a global understanding of biocrust biodiversity has lead us to assign a general importance to community members that may, in fact, be regional. Here we report for the first time the presence of biocrusts in Colombia (South America) through 16S rRNA genes surveys across an arid, a semi-arid and a dry subtropical region within the country. Our results constitute the first glance of the Bacterial/Archaeal communities associated with South American biocrust microbiomes. Communities where cyanobacteria other than Microcoleus vaginatus prevail, despite the latter being considered a key species elsewhere, illustrate differentiable results in these surveys. We also find that the coastal biocrust communities in Colombia include halo-tolerant and halophilic species, and that niche preference of some nitrogen fixing organisms deviate from previously described global trends. In addition, we identified a high proportion (ranging from 5 to 70%, in average) of cyanobacterial sequences that did not match any formally described cyanobacterial species. Our investigation of Colombian biocrusts points to highly diverse communities with climatic regions controlling taxonomic configurations. They also highlight an extensive local diversity to be discovered which is central to better design management and restoration strategies for drylands soils currently undergoing disturbances due to land use and global warming. Finally, this field study highlights the need for an improved mechanistic understanding of the response of key biocrust community members to changes in moisture and temperature.

5.
Sci Total Environ ; 931: 172750, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677426

RESUMO

Soil nematodes are the most abundant animals on Earth and play critical roles in regulating numerous ecosystem processes, from enhancing primary productivity to mineralizing multiple nutrients. In dryland soils, a rich community of microphyte organisms (biocrusts) provide critical habitats for soil nematodes, but their presence is being threatened by increasing aridity induced by global climate change. Despite its importance, how types of biocrusts and aridity index influence soil nematode community in dryland mountain ecosystems remains largely unknown. To fill these knowledge gaps, we conducted a field survey with contrasting aridity indexes (0.2, 0.4, and 0.6) and three types of biocrusts (cyanobacterial, cyanobacterial-moss mixed, and moss crusts) in the topsoil (0-5 cm) from the northern Chinese Loess Plateau. We found that the abundance (number of individuals per gram of soil), richness (number of Operational Taxonomic Units; OTUs), and diversity (number of different species) of soil nematodes were remarkably higher under biocrusts than in bare soils, regardless of aridity index and types of biocrusts. Our results also showed that the same variables had the highest values in moss crusts compared to cyanobacterial and cyanobacterial-moss mixed crusts. Structural equation modelling further revealed that biocrust types and traits (i.e., biocrust thickness, chlorophyll content, shear force, and penetration resistance) are the most important factors associated with both nematode abundance and richness. Together, our findings indicate that biocrusts, especially moss cover, and less stressful aridity conditions favor soil nematodes community in dryland mountain regions. Such knowledge is critical for anticipating the distribution of these animals under climate change scenarios and, ultimately, the numerous ecosystem services supported by soil nematodes.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Nematoides , Solo , Animais , China , Mudança Climática , Clima Desértico , Monitoramento Ambiental
6.
Sci Rep ; 14(1): 9069, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643235

RESUMO

Rammed earth is a kind of cleaning material, widely used in all kinds of buildings in the world. The Great Wall of ancient China is a typical world cultural site built from rammed earth. The rammed earth Great Wall of Shanhaiguan is close to Bohai Bay, which has suffered from long-term erosion by rain, causing a series of problems such as soil loss, collapse and gully flushing. The protection materials of the rammed earth site have always puzzled scholars. However, during the rainy season, it was found that some of the walls at Xiaowan Gouge and Nantuzhuang Gouge in the Shanhaiguan Great Wall had unwashed traces, the soil surface of the walls was intact, and the anti-erosion ability of the walls was significantly higher than that of other places. In order to explore the reasons for its strong anti-erosion ability in the natural state of rammed earth wall, guide the protection of rammed earth Great Wall, and carry out different experimental tests to explore its anti-erosion reasons and internal mechanisms. Firstly, the characteristics of rammed soil were understood through the composition test of rammed soil, and the indoor and outdoor erosion test was carried out to determine that the anti-erosion reason was the protection of gray-green soil crust. The property and composition of soil crust were determined through the immersion test and genome sequencing. Finally, the protection mechanism of soil crust was analyzed by scanning electron microscopy.

7.
Ecol Lett ; 27(4): e14414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622965

RESUMO

Animals assimilate macronutrients and mineral nutrients in specific quantities and ratios to maximise fitness. To achieve this, animals must ingest different foods that contain the needed nutrients or facilitate the digestion of those nutrients. We explored how these multidimensional considerations affect the desert isopods (Hemilepistus reaumuri) curious food selection, using field and laboratory experiments. Wild isopods consumed three-fold more macronutrient-poor biological soil crust (BSC) than plant litter. Isopods tightly regulated macronutrient and calcium intake, but not phosphorus when eating the two natural foods and when artificial calcium and phosphorus sources substituted the BSC. Despite the equivalent calcium ingestion, isopods performed better when eating BSC compared to artificial foods. Isopods that consumed BSC sterilised by gamma-radiation ate more but grew slower than isopods that ate live BSC, implying that ingested microorganisms facilitate litter digestion. Our work highlights the need to reveal the multifaceted considerations that affect food-selection when exploring trophic-interactions.


Assuntos
Poeira , Isópodes , Animais , Cálcio , Dieta/veterinária , Nutrientes
8.
Ecology ; 105(4): e4271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444180

RESUMO

Lichens are significant components of the biological soil crust communities in gypsum ecosystems and are involved in several processes related to ecosystem functioning, such as water and nutrient cycles or protection against soil erosion. Although numerous studies centered on lichen taxonomy and ecology have been performed in these habitats, global information about lichen species from gypsum substrates or their distributional ranges at a global scale is lacking. Thus, we compiled a global data set of recorded lichen species growing on gypsum. This review is based on systematic searches in two bibliographic databases (Web of Science and the more specialized database Mattick's Literature Index) using various keywords related to the substrate or ecology (i.e., gypsum, gypsiferous, semiarid, saxicolous, terricolous). In addition, we revised lichen literature from countries with gypsum soils using Mattick's, Hamburg University's Worldwide checklist, and different national lichen checklists. Ultimately the review includes a total of 321 studies. This data set included 6114 specimen records belonging to 336 recorded lichen species from 26 countries throughout the world. The results showed large differences in the number of species recorded among countries, reflecting differences in the sampling effort. We provide a table with the number of studies and species in relation to gypsum surface in order to account for the bias produced by sampling effort. The number of studies carried out per country was not related to the gypsum surface but probably to other factors, such as accessibility to field sampling, economic or political factors, or the presence of a wider community of lichenologists. Thus, Spain and Germany hosted the highest number of recorded species (160 and 114 species, respectively). Outside the European continent, only a few countries had a large number of species: Morocco (46), United States (42), and Iran (37). Remarkably, countries from the southern hemisphere (i.e., Australia, Chile, Namibia, and South Africa) showed a low number of studies from gypsum lands, supporting the stated biases observed in sampling efforts among countries. Considering the most studied countries, the results show that Teloschistaceae was the most represented family in gypsum ecosystems followed by Verrucariaceae and Cladoniaceae. Regarding particular species, Psora decipiens and Squamarina lentigera were some of the most widespread and abundant species in these habitats. This data set constitutes a basic and first step toward a much more comprehensive database, to be periodically updated in future releases, which also serves to identify countries or territories where future studies should be accomplished. There are no copyright restrictions on the data; please cite this data paper if the data are used in publications and teaching events.


Assuntos
Sulfato de Cálcio , Ecossistema , Líquens , Líquens/fisiologia , Líquens/classificação , Solo
9.
Mar Environ Res ; 197: 106449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492504

RESUMO

Soil erosion stands as the preeminent environmental concern globally, attaining heightened significance, particularly within islands where land resources prove notably scarce. Biological soil crusts, referred to as biocrusts, assume a pivotal ecological role in soil conservation. Notably, they augment the horizontal stability of the substrate through the exudation of microbial extracellular polymeric substances (EPS), thereby shielding the soil against shear stress, exemplified in the form of water erosion. While extant research has delved into the anti-erosion mechanisms of biocrusts in arid landscapes, a conspicuous lacuna persists in the exploration of coral island environments. In this study, we collected and assessed 30 samples encompassing dark biocrusts, light biocrusts, and bare soil to scrutinize the potential anti-erosion efficacy of tropical coral island biocrusts within the South China Sea. Employing a cohesive strength meter, we quantified soil shear stress across various stages of biocrust development, revealing a discernible enhancement in soil erosion resistance during the formation of biocrusts. Relative to the exposed bare soil, the soil shear stress exhibited an escalation from 0.33 N m-2 to 0.61 N m-2 and 1.31 N m-2 in the light biocrusts and dark biocrusts, respectively. Mechanistically, we assayed microbial EPS contents, exposing a positive correlation between EPS and soil anti-erodibility, encompassing extracellular protein and polysaccharide. Concurrently, bacterial abundance displayed a significant augmentation commensurate with biocrust formation and development. In pursuit of elucidating the origin of EPS, high-throughput amplicon sequencing was executed to identify microorganisms contributing to biocrust development. Correlation analysis discerned Cyanobacteria, Chloroflexi, Deinococcota, and Patescibacteria as potential microbials fostering EPS production and fortifying erosion resistance. Collectively, our study presents the first evidence that biocrust from tropical coral reef island in the South China Sea promotes resistance to soil erosion, pinpointing key EPS-producing microbials against soil erosion. The findings would provide insights for island environment restoration.


Assuntos
Cianobactérias , Microbiota , Solo/química , Matriz Extracelular de Substâncias Poliméricas , Erosão do Solo , China , Ecossistema
10.
Sci Total Environ ; 918: 170794, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336052

RESUMO

Given their global prevalence, dryland (including hyperarid, arid, semiarid, and dry subhumid regions) ecosystems are critical for supporting soil organic carbon (SOC) stocks, with even small changes in such SOC pools affecting the global carbon (C) cycling. Biocrusts play an essential role in supporting C cycling in semiarid ecosystems. However, the influence of biocrusts and their successional stages on SOC and its fraction contents, as well as their role in regulating new input C into SOC fractions remain largely unknown. In this study, we collected continuous samples of bare soil (BS) and three successional stages of biocrust soils (cyanobacterial (CC), low-cover moss (LM), and high-cover moss (HM)) at 0-5 cm depth every month for one year in a semiarid desert ecosystem. We analyzed SOC changes among the samples and their fraction contents including: labile organic C (LOC) (composed of microbial biomass C (MBC), dissolved organic C (DOC), and easily oxidized organic C (EOC)) and recalcitrant organic C (ROC) fractions, soil nutrient content including: ammonium (NH4+-N), nitrate (NO3--N), and available phosphorus (AP), and soil temperature and moisture. We also conducted a 13C pulse-labelling experiment in the field to accurately quantify the effects of biocrust successional stage on exogenous C allocation to SOC fractions. Our results showed that the three successional stages of biocrust (CC-LM-HM) increased SOC and ROC contents by an average of 5.3 ± 3.6 g kg-1 and 4.0 ± 3.0 g kg-1, respectively; and the MBC, DOC, and EOC contents increased by an average of 41.7 ± 24.8 mg kg-1, 28.7 ± 12.6 mg kg-1, and 1.2 ± 0.6 g kg-1, respectively, compared to that of BS. These increases were attributed to an increase in photosynthetic pigment content, higher nutrient levels, and more suitable microclimates (e.g., higher moisture and more moderate temperature) during biocrust succession. More importantly, SOC stability was greatly improved with biocrust succession from cyanobacteria to moss, as evidenced by the reduction in soil EOC:SOC and EOC:ROC ratios by an average of 50 ± 34 % and 99 ± 67 %, respectively, while the ROC:SOC ratio increased by 33 ± 16 % with biocrust succession compared to those of BS. The biocrust SOC, DOC, and MBC 13C contents at different stages were on average 0.096 ± 0.034 mg kg-1, 0.010 ± 0.005 mg kg-1, and 0.014 ± 0.005 mg kg-1 higher than those of BS. Similarly, the allocation of new-input C among the DOC and MBC at different biocrust stages (19 ± 10 %) was significantly higher than that of BS (9 ± 6 %). New-input C into the biocrusts was fixed by microbes (43 ± 18 %) within ∼10 days and converted into other forms of C (85 ± 5 %) after 80 days. Our study provides a new perspective on how biocrusts support C cycling in semiarid desert ecosystems by mediating new C inputs into diverse fractional contents, and highlights the significance of biocrust successional stages in maintaining soil C stocks and stability in the dryland soil system.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Solo , Carbono , Briófitas/fisiologia , Microbiologia do Solo
11.
J Hazard Mater ; 465: 133524, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232555

RESUMO

Utilizing an acid-resistant biological soil crust (BSC) species that we discovered, we developed a device capable of efficiently removing cadmium (Cd) from mine wastewater with varying levels of acidity. Our research has demonstrated that this particular BSC species adapts to acidic environments by regulating the balance of fatty acids and acid-resistant enzymes. At a Cd concentration of 5 mg/L, the BSC grew well. When the initial Cd concentration was 2 mg/L, and the flow rate was set at 1 mL/min (at pH levels of 3, 4, and 5), BSC had a high removal rate of Cd, and the removal rate increased with the increase of pH (from 90% to 97%). Chemisorption is the primary removal mechanism in the initial stage, where the functional groups and minerals on the surface of the BSC play a significant role. In addition, BSC also adapts to Cd stress by changing bacterial community structure. It was discovered through infrared spectroscopy and two-dimensional correlation analysis that hydrophilic groups, specifically phosphate and carboxyl groups, exhibited the highest reactivity during the Cd binding process. Protein secondary structure analysis confirmed that as the pH increased, the adsorption capacity of the BSC increased; making biofilm formation easier. This study presents a novel approach for the treatment of acidic wastewater.


Assuntos
Cádmio , Águas Residuárias , Cádmio/análise , Solo/química , Minerais , Adsorção , Concentração de Íons de Hidrogênio
12.
Microb Ecol ; 87(1): 22, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157058

RESUMO

Biological soil crust (BSC) constitutes a consortium of cyanobacteria, algae, lichen, mosses, and heterotrophic microorganisms, forming a miniature ecosystem within the uppermost soil layer. The biomass of different organisms forming BSC and their activity changes along with succession. Previous studies focused primarily on BSC in hyper-arid/arid regions, whereas the ecophysiology of BSC in temperate climates is still not well recognized. In order to determine changes in overall microbial activity and photosynthetic biomass in BSC at different stages of the succession of inland sandy grasslands, we analyzed dehydrogenase activity and determined the content of photosynthetic pigments. We also compared these parameters between BSC developed on the dune ridges and aeolian blowouts in the initial stage of succession. Our study revealed a significant increase in both photosynthetic biomass and overall microbial activity in BSC as the succession of inland shifting sands progresses. We found that chl a concentration in BSC could be considered a useful quantitative indicator of both the presence of photoautotrophs and the degree of soil crust development in warm-summer humid continental climates. The photosynthetic biomass was closely related to increased microbial activity in BSC, which suggests that photoautotrophs constitute a major BSC component. Dune blowouts constitute environmental niches facilitating the development of BSC, compared to dune ridges. High biomass of microorganisms in the dune blowouts may be associated with a high amount of organic material and more favorable moisture conditions. We conclude that deflation fields are key places for keeping a mosaic of habitats in the area of shifting sands and can be a reservoir of microorganisms supporting further settlement of dune slopes by BSC.


Assuntos
Ecossistema , Solo , Biomassa , Microbiologia do Solo , Clima Desértico
13.
Front Microbiol ; 14: 1283073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152373

RESUMO

Tropical coral islands assume a pivotal role in the conservation of oceanic ecosystem biodiversity. However, their distinctive environmental attributes and limited vegetation render them highly susceptible to soil erosion. The biological soil crust (biocrust), owing to its significant ecological role in soil stabilization and erosion prevention, is deemed an effective means of mitigating soil erosion on coral island. However, existing research on the mechanisms through which biocrusts resist soil erosion has predominantly concentrated on arid and semi-arid regions. Consequently, this study will specifically delve into elucidating the erosion-resistant mechanisms of biocrusts in tropical coral island environments, South China Sea. Specifically, we collected 16 samples of biocrusts and bare soil from Meiji Island. High-throughput amplicon sequencing was executed to analyze the microbial community, including bacteria, fungi, and archaea. Additionally, quantitative PCR was utilized to assess the abundance of the bacterial 16S rRNA, fungal ITS, archaeal 16S rRNA, and cyanobacterial 16S rRNA genes within these samples. Physicochemical measurements and assessments of extracellular polymeric substances (EPSs) were conducted to characterize the soil properties. The study reported a significantly decreased soil erodibility factor after biocrust formation. Compared to bare soil, soil erodibility factor decreased from 0.280 to 0.190 t h MJ-1 mm-1 in the biocrusts. Mechanistically, we measured the microbial EPS contents and revealed a negative correlation between EPS and soil erodibility factor. Consistent with increased EPS, the abundance of bacteria, fungi, archaea, and cyanobacteria were also detected significantly increased with biocrust formation. Correlation analysis detected Cyanobacteria, Chloroflexi, Deinococcota, and Crenarchaeota as potential microbials promoting EPSs and reducing soil erosion. Together, our study presents the evidence that biocrust from tropical coral island in the South China Sea promotes resistance to soil erosion, pinpointing key EPSs-producing microbials against soil erosion. The findings would provide insights for island soil restoration.

14.
Microorganisms ; 11(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894228

RESUMO

Land use practices and climate change have driven substantial soil degradation across global drylands, impacting ecosystem functions and human livelihoods. Biological soil crusts, a common feature of dryland ecosystems, are under extensive exploration for their potential to restore the stability and fertility of degraded soils through the development of inoculants. However, stressful abiotic conditions often result in the failure of inoculation-based restoration in the field and may hinder the long-term success of biocrust restoration efforts. Taking an assisted migration approach, we cultivated biocrust inocula sourced from multiple hot-adapted sites (Mojave and Sonoran Deserts) in an outdoor facility at a cool desert site (Colorado Plateau). In addition to cultivating inoculum from each site, we created an inoculum mixture of biocrust from the Mojave Desert, Sonoran Desert, and Colorado Plateau. We then applied two habitat amelioration treatments to the cultivation site (growth substrate and shading) to enhance soil stability and water availability and reduce UV stress. Using marker gene sequencing, we found that the cultivated mixed inoculum comprised both local- and hot-adapted cyanobacteria at the end of cultivation but had similar cyanobacterial richness as each unmixed inoculum. All cultivated inocula had more cyanobacterial 16S rRNA gene copies and higher cyanobacterial richness when cultivated with a growth substrate and shade. Our work shows that it is possible to field cultivate biocrust inocula sourced from different deserts, but that community composition shifts toward that of the cultivation site unless habitat amelioration is employed. Future assessments of the function of a mixed inoculum in restoration and its resilience in the face of abiotic stressors are needed to determine the relative benefit of assisted migration compared to the challenges and risks of this approach.

15.
Sci Total Environ ; 905: 167211, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730025

RESUMO

Biological soil crusts (biocrusts) are widely distributed in global drylands and have multiple significant roles in regulating dryland soil and ecosystem multifunctionality. However, maps of their distribution over large spatial scales are uncommon and sometimes unreliable, because our current remote sensing technology is unable to efficiently discriminate between biocrusts and vascular plants or even bare soil across different ecosystem and soil types. The lack of biocrust spatial data may limit our ability to detect risks to dryland function or key tipping points. Here, we indirectly mapped biocrust distribution in China's drylands using spatial prediction modeling, based on a set of occurrences of biocrusts (379 in total) and high-resolution soil and environmental data. The results showed that biocrusts currently cover 13.9 % of China's drylands (or 5.7 % of China's total area), with moss-, lichen-, and cyanobacterial-dominated biocrusts each occupying 5.7 % to 10.7 % of the region. Biocrust distribution is mainly determined by soil properties (soil type and contents of gravel and nitrogen), aridity stress, and altitude. Their most favorable habitat is arenosols with low contents of gravel and nitrogen, in climate with a drought index of 0.54 and an altitude of about 500 m. By 2050, climate change will lead to a 5.5 %-9.0 % reduction in biocrust cover. Lichen biocrusts exhibit a high vulnerability to climate change, with potential reductions of up to 19.0 % in coverage. Biocrust cover loss is primarily caused by the combined effects of the elevated temperature and increased precipitation. Our study provides the first high-resolution (250 × 250 m) map of biocrust distribution in China's drylands and offers a reliable approach for mapping regional or global biocrust colonization. We suggest incorporating biocrusts into Earth system models to identify their significant impact on global or regional-scale processes under climate change.


Assuntos
Briófitas , Cianobactérias , Líquens , Ecossistema , Líquens/fisiologia , Cianobactérias/fisiologia , Briófitas/fisiologia , Solo , Mudança Climática , Microbiologia do Solo , Nitrogênio , China
16.
Biology (Basel) ; 12(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37626952

RESUMO

Exopolysaccharide-producing cyanobacterial strains in biological soil crusts are described, in addition to their chemical properties and antioxidant and flocculation activities. The EPSs from Pudukkottai blackish biological soil crusts (PBBSCs) showed significant amounts of total soluble proteins (0.1687 mg/mL) and carbohydrates (0.8056 mg/mL) compared with the Ariyalur blackish biological soil crusts (ABBSCs). LC-MS analysis of the cyanobacterial polysaccharides revealed the presence of natural sugars such as ribose and glucose/mannose, and uronic acids. The FTIR spectrum showed specific peak for OH and -NH stretching, C-H stretching, and carboxylic acids as the dominant groups in EPS. The in vitro DPPH assay of EPSs from PBBSCs showed 74.3% scavenging activity. Furthermore, the reducing power was determined to be 0.59 ata 500 mg/mL concentration, respectively. The extracted EPSs from the biological soil crust flocculated Kaolin clay suspension maximum at 500 mg/mL. Consequently, the cyanobacterial strain and exopolysaccharide characterization from the sacred forest's biological soil crust were analyzed for their bioactive potential, bio-crust diversity, and distribution.

17.
Front Microbiol ; 14: 1176760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601344

RESUMO

Up to 35% of global drylands have experienced degradation due to anthropogenic impacts, including physical disturbances like trampling and soil removal. These physical disturbances can result in the loss of soil communities known as biological soil crusts (biocrusts) and the important functions they provide, such as soil stability and fertility. The reestablishment of biocrust organisms after disturbance is determined by many factors, including propagule availability, climate, and vascular plant community structure. The role of these factors in natural recovery may be intensified by the extent (or size) of a disturbance. For example, large disturbances can result in reduced propagule availability or enhanced erosion, which impact both the dispersal and establishment of biocrust organisms on disturbed soils, leading to a slower natural recovery. To test how disturbance extent impacts biocrust's natural recovery, we installed four disturbance extents by completely removing biocrust from the mineral soil in plots ranging from 0.01 m2 to 1 m2 and measured productivity and erosion resistance. We found that small disturbance extents did not differ in chlorophyll a content, total exopolysaccharide content, or soil stability after 1.5 years of natural recovery. However, the concentration of glycocalyx exopolysaccharide was higher in the smallest disturbances after the recovery period. Our results indicate that disturbances <1 m2 in scale recover at similar rates, with soil stability returning to high levels in just a few years after severe disturbance. Our findings align with prior work on biocrust natural recovery in drylands and highlight the opportunity for future work to address (1) cyanobacteria, moss, and lichen propagule dispersal; (2) rates and mechanisms of biocrust succession; and (3) the role of wind or water in determining biocrust colonization patterns as compared to lateral growth.

18.
Sci Total Environ ; 901: 165937, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532035

RESUMO

Biological soil crusts (BSCs) are an important biological component of the soil surface, covering approximately 12 % of the Earth's land surface. Although BSCs are closely related to habitats, the microbial diversity and spatial variability of BSCs in different ecosystems are still unclear, especially on the Qinghai-Tibet Plateau (QTP), where climate is changeable and habitats are complex. Here, we investigated the diversity, assembly processes, spatial distribution pattern and driving factors of prokaryotic and eukaryotic microbial communities in BSCs in four habitats on the QTP. It was found that habitat-specific environmental factors regulated the composition, diversity and spatial variability of BSC microbial communities. Soil organic carbon and soil water content were the most important factors (R2 = 0.9024, P = 0.001; R2 = 0.8004, P = 0.001) affecting the spatial differences in prokaryotes and eukaryotes, respectively. Under the specific climate of the QTP, the spatial pattern of microbial communities in BSCs was controlled by precipitation rather than temperature. In addition, ecological processes further explained the effects of habitat specificity, and environmental filtering explained microbial community differences better than dispersal limitation. The results of the neutral community model and the normalized stochastic ratio index revealed that the assembly of prokaryotic communities was determined by deterministic processes at the regional scale, and at the local scale, the assembly process was mainly determined by habitat type, while the assembly of eukaryotic communities was determined by stochastic processes at both the regional and local scales. This study provided a scientific reference for the prediction of BSC distribution and resource conservation under future climate change scenarios.


Assuntos
Microbiota , Solo , Tibet , Carbono , Biota , Microbiologia do Solo
19.
Front Microbiol ; 14: 1179291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448577

RESUMO

Biocrusts are ecosystem engineers in drylands and structure the landscape through their ecohydrological effects. They regulate soil infiltration and evaporation but also surface water redistribution, providing important resources for vascular vegetation. Spatially-explicit ecohydrological models are useful tools to explore such ecohydrological mechanisms, but biocrusts have rarely been included in them. We contribute to closing this gap and assess how biocrusts shape spatio-temporal water fluxes and availability in a dryland landscape and how landscape hydrology is affected by climate-change induced shifts in the biocrust community. We extended the spatially-explicit, process-based ecohydrological dryland model EcoHyD by a biocrust layer which modifies water in- and outputs from the soil and affects surface runoff. The model was parameterized for a dryland hillslope in South-East Spain using field and literature data. We assessed the effect of biocrusts on landscape-scale soil moisture distribution, plant-available water and the hydrological processes behind it. To quantify the biocrust effects, we ran the model with and without biocrusts for a wet and dry year. Finally, we compared the effect of incipient and well-developed cyanobacteria- and lichen biocrusts on surface hydrology to evaluate possible paths forward if biocrust communities change due to climate change. Our model reproduced the runoff source-sink patterns typical of the landscape. The spatial differentiation of soil moisture in deeper layers matched the observed distribution of vascular vegetation. Biocrusts in the model led to higher water availability overall and in vegetated areas of the landscape and that this positive effect in part also held for a dry year. Compared to bare soil and incipient biocrusts, well-developed biocrusts protected the soil from evaporation thus preserving soil moisture despite lower infiltration while at the same time redistributing water toward downhill vegetation. Biocrust cover is vital for water redistribution and plant-available water but potential changes of biocrust composition and cover can reduce their ability of being a water source and sustaining dryland vegetation. The process-based model used in this study is a promising tool to further quantify and assess long-term scenarios of climate change and how it affects ecohydrological feedbacks that shape and stabilize dryland landscapes.

20.
Front Microbiol ; 14: 1136322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152745

RESUMO

Under continuous human disturbance, regeneration is the basis for biodiversity persistence and ecosystem service provision. In tropical dry forests, edaphic ecosystem engineering by biological soil crusts (biocrusts) could impact regeneration by influencing erosion control and soil water and nutrient fluxes, which impact landscape hydrology, geomorphology, and ecosystem functioning. This study investigated the effect of cyanobacteria-dominated biocrusts on water infiltration and aggregate stability in a human-modified landscape of the Caatinga dry forest (NE Brazil), a system characterized by high levels of forest degradation and increasing aridity. By trapping dust and swelling of cyanobacterial filaments, biocrusts can seal soil surfaces and slow down infiltration, which potentially induces erosion. To quantify hydraulic properties and erosion control, we used minidisc-infiltrometry, raindrop-simulation, and wet sieving at two sites with contrasting disturbance levels: an active cashew plantation and an abandoned field experiencing forest regeneration, both characterized by sandy soils. Under disturbance, biocrusts had a stronger negative impact on infiltration (reduction by 42% vs. 37% during regeneration), although biocrusts under regenerating conditions had the lowest absolute sorptivity (0.042 ± 0.02 cm s-1/2) and unsaturated hydraulic conductivity (0.0015 ± 0.0008 cm s-1), with a doubled water repellency. Biocrusts provided high soil aggregate stability although stability increased considerably with progression of biocrust succession (raindrop simulation disturbed: 0.19 ± 0.22 J vs. regenerating: 0.54 ± 0.22 J). The formation of stable aggregates by early successional biocrusts on sandy soils suggests protection of dry forest soils even on the worst land use/soil degradation scenario with a high soil erosion risk. Our results confirm that biocrusts covering bare interspaces between vascular plants in human-modified landscapes play an important role in surface water availability and erosion control. Biocrusts have the potential to reduce land degradation, but their associated ecosystem services like erosion protection, can be impaired by disturbance. Considering an average biocrust coverage of 8.1% of the Caatinga landscapes, further research should aim to quantify the contribution of biocrusts to forest recovery to fully understand the role they play in the functioning of this poorly explored ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA