Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 181, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890640

RESUMO

BACKGROUND: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.


Assuntos
Actinobacteria , Metabolismo Secundário , Compostos Orgânicos Voláteis , Actinobacteria/metabolismo , Actinobacteria/genética , Compostos Orgânicos Voláteis/metabolismo , Streptomyces/metabolismo , Streptomyces/genética , Família Multigênica
2.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37532836

RESUMO

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

3.
Front Microbiol ; 14: 1271418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937215

RESUMO

Introduction: Although Bacillus species have produced a wide variety of structurally diverse and biologically active natural products, the secondary biosynthetic potential of Bacillus species is widely underestimated due to the limited number of biosynthetic gene clusters (BGCs) in this genus. The significant variation in the diversity and novelty of BGCs across different species within the Bacillus genus presents a major obstacle to the efficient discovery of novel natural products from Bacillus. Methods: In this study, the number of each class of BGCs in all 6,378 high-quality Bacillus genomes was predicted using antiSMASH, the species-specificity of BGC distribution in Bacillus was investigated by Principal component analysis. Then the structural diversity and novelty of the predicted secondary metabolites in Bacillus species with specific BGC distributions were analyzed using molecular networking. Results: Our results revealed a certain degree of species-specificity in the distribution of BGCs in Bacillus, which was mainly contributed by siderophore, type III polyketide synthase (T3PKS), and transAT-PKS BGCs. B. wiedmannii, B. thuringiensis, and B. cereus are rich in RiPP-like and siderophore BGCs, but lack T3PKS BGCs, while B. amyloliquefaciens and B. velezensis are abundant in transAT-PKS BGCs. These Bacillus species collectively encode 77,541 BGCs, with NRPS and RiPPs being the two most dominant types, which are further categorized into 4,291 GCFs. Remarkably, approximately 54.5% of GCFs and 93.8% of the predicted metabolite scaffolds are found exclusively in a single Bacillus species. Notably, B. cereus, B. thuringiensis, and B. velezensis exhibit the highest potential for producing species-specific NRPS and PKS bioinformatic natural products. Taking two species-specific NRPS gene clusters as examples, the potential of Bacillus to synthesize novel species-specific natural products is illustrated. Conclusion: This study highlights the species-specificity of the secondary biosynthetic potential in Bacillus and provides valuable insights for the targeted discovery of novel natural products from this genus.

4.
Front Microbiol ; 14: 1157601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323895

RESUMO

Mangrove rhizosphere soils host diverse Actinobacteria tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of bioactive natural products, including those with potential medicinal applications. In this study, we applied an integrated strategy of combining phylogenetic diversity, biological activities, and biosynthetic gene clusters (BGCs) screening approach to investigate the biotechnological importance of Actinobacteria isolated from mangrove rhizosphere soils from Hainan Island. The actinobacterial isolates were identifified using a combination of colony morphological characteristics and 16S rRNA gene sequence analysis. Based on the results of PCR-detected BGCs screening, type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected. Crude extracts of 87 representative isolates were subjected to antimicrobial evaluation by determining the minimum inhibitory concentration of each strain against six indicator microorganisms, anticancer activities were determined on human cancer cell lines HepG2, HeLa, and HCT-116 using an MTT colorimetric assay, and immunosuppressive activities against the proliferation of Con A-induced T murine splenic lymphocytes in vitro. A total of 287 actinobacterial isolates affiliated to 10 genera in eight families of six orders were isolated from five different mangrove rhizosphere soil samples, specififically, Streptomyces (68.29%) and Micromonospora (16.03%), of which 87 representative strains were selected for phylogenetic analysis. The crude extracts of 39 isolates (44.83%) showed antimicrobial activity against at least one of the six tested indicator pathogens, especially ethyl acetate extracts of A-30 (Streptomyces parvulus), which could inhibit the growth of six microbes with MIC values reaching 7.8 µg/mL against Staphylococcus aureus and its resistant strain, compared to the clinical antibiotic ciproflfloxacin. Furthermore, 79 crude extracts (90.80%) and 48 (55.17%) of the isolates displayed anticancer and immunosuppressive activities, respectively. Besides, four rare strains exhibited potent immunosuppressive activity against the proliferation of Con A-induced T murine splenic lymphocyte in vitro with an inhibition rate over 60% at 10 µg/mL. Type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected in 49.43, 66.67, and 88.51% of the 87 Actinobacteria, respectively. Signifificantly, these strains (26 isolates, 29.89%) harbored PKS I, PKS II, and NRPS genes in their genomes. Nevertheless, their bioactivity is independent of BGCs in this study. Our findings highlighted the antimicrobial, immunosuppressive, and anticancer potential of mangrove rhizosphere Actinobacteria from Hainan Island and the biosynthetic prospects of exploiting the corresponding bioactive natural product.

5.
Biotechnol Adv ; 66: 108176, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37211187

RESUMO

Microbial natural products and their structural analogues have widely used as pharmaceutical agents, especially for infectious diseases and cancer. Despite this success, new structural classes with innovative chemistry and modes of action are urgently needed to be developed to combat the growing antimicrobial resistance and other public health problems. The advances in next-generation sequencing technologies and powerful computational tools open up new opportunities to explore microbial biosynthetic potential from underexplored sources, with millions of secondary metabolites awaiting discovery. The review highlights challenges associated with discovery of new chemical entities, rich reservoirs provided by untapped taxa, ecological niches or host microbiomes, emerging synthetic biotechnologies to unearth the hidden microbial biosynthetic potential for novel drug discovery at scale and speed.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/farmacologia , Produtos Biológicos/química
6.
Microbiol Spectr ; 11(1): e0276422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622153

RESUMO

The prevalence of superbugs, represented by methicillin-resistant Staphylococcus aureus (MRSA), has become a serious clinical and public safety concern with rising incidence in hospitals. Polyketides with diverse chemical structures harbor many antimicrobial activities, including those of rifampin and rapamycin against MRSA. Streptomyces sp. QHH-9511 was isolated from a niche habitat in the Qinghai-Tibet Plateau and used to produce antibacterial metabolites. Herein, an integrated approach combining genome mining and metabolic analysis were employed to decipher the chemical origin of the antibacterial components with pigmented properties in strain QHH-9511, a novel Streptomyces species from a lichen symbiont on the Qinghai-Tibet Plateau. Genomic phylogeny assembled at the chromosome level revealed its unique evolutionary state. Further genome mining uncovered 36 candidate gene clusters, most of which were uncharacterized. Meanwhile, based on liquid chromatography coupled to diode array detection mass spectrometry, a series of granaticins, BSMs, chromones, phaeochromycins, and related molecules were discovered by using the Global Natural Product Social molecular networking platform. Subsequently, several pigment compounds were isolated and identified by high-resolution mass spectrometry and/or nuclear magnetic resonance, among which the structure-activity relationships of seven aromatic polyketides showed that the fused lactone ring of the C-2 carboxyl group could increase antibacterial activity. Genetic experiments indicated that all seven aromatic polyketides are a series of metabolic shunts produced by a single type II polyketide synthase (PKS) cluster. Comparative genomic analysis of granaticin producers showed that the granaticin gene cluster is widely distributed. This study provides an efficient method to combine genome mining and metabolic profiling techniques to uncover bioactive metabolites derived from specific habitats, while deepening our understanding of aromatic polyketide biosynthesis. IMPORTANCE Undescribed microorganisms from special habitats are being screened for anti-superbug drug molecules. In a project to screen actinomycetes for anti-MRSA activity, we isolated a Streptomyces strain from Qinghai Lake lichens. The phylogeny based on the genome assembled at the chromosome level revealed this strain's unique evolutionary state. The chemical origins of the antibacterial components with pigment properties in strain QHH-9511 were determined using an integrated approach combining genome mining and metabolic analysis. Further genome mining uncovered 36 secondary metabolite gene clusters, the majority of which were previously unknown. A series of aromatic compounds were discovered using molecular network analysis, separation, and extraction. Genetic experiments revealed that all seven aromatic polyketides are a series of metabolic shunts produced by a single cluster of type II PKSs. This study describes a method for identifying novel Streptomyces from specific habitats by combining genome mining with metabolic profiling techniques.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Policetídeos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Tibet , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Policetídeos/química , Policetídeos/metabolismo , Genômica , Filogenia
7.
J Fungi (Basel) ; 8(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547578

RESUMO

Inonotus hispidus mushroom is a traditional medicinal fungus with anti-cancer, antioxidation, and immunomodulatory activities, and it is used in folk medicine as a treatment for indigestion, cancer, diabetes, and gastric illnesses. Although I. hispidus is recognized as a rare edible medicinal macrofungi, its genomic sequence and biosynthesis potential of secondary metabolites have not been investigated. In this study, using Illumina NovaSeq combined with the PacBio platform, we sequenced and de novo assembled the whole genome of NPCB_001, a wild I. hispidus isolate from the Aksu area of Xinjiang Province, China. Comparative genomic and phylogenomic analyses reveal interspecific differences and evolutionary traits in the genus Inonotus. Bioinformatics analysis identified candidate genes associated with mating type, polysaccharide synthesis, carbohydrate-active enzymes, and secondary metabolite biosynthesis. Additionally, molecular networks of metabolites exhibit differences in chemical composition and content between fruiting bodies and mycelium, as well as association clusters of related compounds. The deciphering of the genome of I. hispidus will deepen the understanding of the biosynthesis of bioactive components, open the path for future biosynthesis research, and promote the application of Inonotus in the fields of drug research and functional food manufacturing.

8.
Cells ; 11(21)2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36359906

RESUMO

The increasing appearance of multiresistant pathogens, as well as emerging diseases, has highlighted the need for new strategies to discover natural compounds that can be used as therapeutic alternatives, especially in the genus Streptomyces, which is one of the largest producers of bioactive metabolites. In recent years, the study of volatile compounds (VOCs) has raised interest because of the variety of their biological properties in addition to their involvement in cell communication. In this work, we analyze the implications of VOCs as mediating molecules capable of inducing the activation of biosynthetic pathways of bioactive compounds in surrounding Actinomycetes. For this purpose, several strains of Streptomyces were co-cultured in chamber devices that allowed VOC exchange while avoiding physical contact. In several of those strains, secondary metabolism was activated by VOCs emitted by companion strains, resulting in increased antibiotic production and synthesis of new VOCs. This study shows a novel strategy to exploit the metabolic potential of Actinomycetes as well as emphasizes the importance of studying the interactions between different microorganisms sharing the same ecological niche.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Streptomyces/genética , Streptomyces/metabolismo , Família Multigênica , Vias Biossintéticas/genética , Descoberta de Drogas
9.
Microbiol Spectr ; 10(5): e0243922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36200896

RESUMO

Laetiporus sulphureus mushroom is a complementary and alternative medicine that has anticancer, antioxidation, and analgesic effects and immunomodulatory activity; it is used as a treatment for cough and rheumatism and is a functional food that can improve physical fitness. Even though L. sulphureus has garnered considerable biotechnological and pharmacological interest due to its excellent cellulose-degrading ability and diverse biological activities, its biosynthetic potential regarding polysaccharides and secondary metabolites has not been thoroughly examined. In this study, we sequenced and assembled the whole genome of a wild L. sulphureus isolate, NWAFU-1, from the Qinling Mountains in China. Comparative genomes analysis revealed genomic differences between subspecies, and phylogenomic analysis revealed evolutionary divergence as well as genome expansion and contraction of individual Polyporaceae family species. Bioinformatics investigation identified candidate genes associated with mating type, polysaccharide synthesis, carbohydrate-active enzymes, and secondary-metabolite biosynthesis, which included multiple terpenoids, nonribosomal peptides, and polyketides. The locations of biosynthetic core genes were mapped and displayed on chromosomes and contigs. Totals of 143 proteins from 126 coding genes were identified and divided into 14 cytochrome P450 families. Furthermore, the biosynthetic network of tetracyclic triterpenoid active components was postulated by genome mining of related genes combined with the molecular network of metabolites. The genome analysis of L. sulphureus in this study improves the understanding of the biosynthesis of active compounds, which will lay a theoretical foundation for subsequent research on active-compound biosynthesis and promote the application of Laetiporus in the field of drug research and functional-food creation. IMPORTANCE L. sulphureus is a parasitic basidiomycete fungus that causes brown rot. The fruiting bodies of L. sulphureus are used as ancient medicines in China and Europe to cure cancer, analgesia, cough, and rheumatism and are considered a functional food that regulates the body and improves health. L. sulphureus was inferred to be a tetrapolar system based on a high-quality genome, which will aid molecular breeding and artificial farming. Screening polysaccharide synthesis candidate genes and comparing carbohydrate-associated genes in brown-rot basidiomycetes help understand their growth. Identifying core genes for secondary-metabolite biosynthesis, gene cluster family analysis, and comparative cluster analysis will guide heterologous-biosynthesis investigations of these genes and help elucidate the biosynthetic pathways for L. sulphureus bioactive natural components. The biosynthesis network of tetracyclic triterpenes was mapped using metabolite profiling and genome scanning. This work explores the biosynthetic capacity of L. sulphureus-derived natural products and lays the foundation for biosynthetic studies of them.


Assuntos
Agaricales , Basidiomycota , Produtos Biológicos , Policetídeos , Doenças Reumáticas , Triterpenos , Agaricales/genética , Agaricales/química , Agaricales/metabolismo , Tosse/genética , Basidiomycota/genética , Terpenos/metabolismo , Genômica , Cromossomos/metabolismo , Carboidratos , Doenças Reumáticas/genética , Celulose , Analgésicos
10.
J Fungi (Basel) ; 8(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736074

RESUMO

Aspergillus niger is one of the most important sources of secondary metabolites (SMs), with a wide array of pharmacological effects, including anti-inflammatory, antitumor, immunomodulatory and antioxidant effects. However, the biosynthetic analysis of these bioactive components has been rarely reported owing to the lack of high-quality genome sequences and comprehensive analysis. In this study, the whole genome of one marine-sponge-derived strain A. niger L14 was sequenced and assembled as well as in-depth bioinformatic analysis. The results indicated that the sequence assembly of strain L14 generated one high-quality genome with a total size of 36.1 Mb, a G + C content of 45.3% and an N50 scaffold of 4.2 Mb. Gene annotation was extensively deployed using various BLAST databases, including non-redudant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) as well as Pathogen Host Interactions (PHI) and Carbohydrate-active enzymes (CAZy) databases. AntiSMASH analysis revealed that this marine strain harbors a total of 69 SMs biosynthesis gene clusters (BGCs), including 17 PKSs, 18 NRPSs, 21 NRPS-likes, 9 terpenes, 2 indoles, 1 betalactone and 1 siderophore, suggesting its biosynthetic potential to produce a wide variety of SMs. These findings will assist in future investigations on the genetic basis of strain L14 and provide insights into its new bioactive SMs for new drug discovery.

11.
Front Microbiol ; 13: 860308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572650

RESUMO

Marine actinomycetes are an important source of antibiotics, but many of them are yet to be explored in terms of taxonomy, ecology, and functional activity. In this study, two marine actinobacterial strains, designated SCSIO 64649T and SCSIO 03032, were isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 64649T formed a single clade with SCSIO 03032 (similarity 99.5%) and sister clades with the species Streptomyces specialis DSM 41924T (97.1%) and Streptomyces manganisoli MK44T (96.8%). The whole genome size of strain SCSIO 64649T was 6.63 Mbp with a 73.6% G + C content. The average nucleotide identity and digital DNA-DNA hybridization between strain SCSIO 64649T and its closest related species were well below the thresholds recommended for species delineation. Therefore, according to the results of polyphasic taxonomy analysis, the strains SCSIO 64649T and SCSIO 03032 are proposed to represent a novel species named Streptomyces marincola sp. nov. Furthermore, strains SCSIO 64649T and 03032 encode 37 putative biosynthetic gene clusters, and in silico analysis revealed that this new species has a high potential to produce unique natural products, such as a novel polyene polyketide compounds, two mayamycin analogs, and a series of post-translationally modified peptides. In addition, other important bioactive natural products, such as heronamide F, piericidin A1, and spiroindimicin A, were also detected in strain SCSIO 64649T. Finally, this new species' metabolic crude extract showed a strong antimicrobial activity. Thanks to the integration of all these analyses, this study demonstrates that the novel species Streptomyces marincola has a unique and novel secondary metabolite biosynthetic potential that not only is beneficial to possible marine hosts but that could also be exploited for industrial applications.

12.
Microorganisms ; 9(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835345

RESUMO

Beehives are populated by bacterial species with a protective role against honey bee pathogens thanks to the production of bioactive metabolites. These compounds are largely unexploited despite their high potential interest for pest management. This study evaluated the capability of bacterial species associated with honey bees to produce 2-heptanone, a volatile organic compound with anesthetic properties of the parasitic mite Varroa destructor. The production of this compound was quantified by SPME-GC-MS in a culture filtrate of nine bacterial strains isolated from the surface of honey bees, and the biosynthetic potential was evaluated in bacterial species associated with apiaries by searching for protein homologs putatively involved in its biosynthesis by using biocomputational tools. The findings pointed out that 2-heptanone was produced by Acetobacteraceae bacterium, Bacillus thuringiensis and Apilactobacillus kunkeei isolates in concentrations between 1.5 and 2.6 ng/mL and that its production was strain-specific. Putative methylketone synthase homologs were found in Bacillus, Gilliamella, Acetobacteraceae, Bartonella and Lactobacillaceae, and the protein sequence results were distributed in nine Sequence Similarity Network (SSN) clusters. These preliminary results support the hypothesis that 2-heptanone may act as a mediator of microbial relationships in hives and provide contributions to assess the role and biosynthetic potential of 2-heptanone in apiaries.

13.
Microorganisms ; 9(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835350

RESUMO

The rapid emergence of bacterial resistance to antibiotics has urged the need to find novel bioactive compounds against resistant microorganisms. For that purpose, different strategies are being followed, one of them being exploring secondary metabolite production in microorganisms from uncommon sources. In this work, we have analyzed the genome of 12 Streptomyces sp. strains of the CS collection isolated from the surface of leaf-cutting ants of the Attini tribe and compared them to four Streptomyces model species and Pseudonocardia sp. Ae150A_Ps1, which shares the ecological niche with those of the CS collection. We used a combination of phylogenetics, bioinformatics and dereplication analysis to study the biosynthetic potential of our strains. 51.5% of the biosynthetic gene clusters (BGCs) predicted by antiSMASH were unknown and over half of them were strain-specific, making this strain collection an interesting source of putative novel compounds.

14.
Front Microbiol ; 12: 714233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421874

RESUMO

Marine environments are home to an extensive number of microorganisms, many of which remain unexplored for taxonomic novelty and functional capabilities. In this study, a slow-growing Streptomyces strain expressing unique genomic and phenotypic characteristics, P38-E01 T , was described using a polyphasic taxonomic approach. This strain is part of a collection of over 8,000 marine Actinobacteria isolates collected in the Trondheim fjord of Norway by SINTEF Industry (Trondheim, Norway) and the Norwegian University of Science and Technology (NTNU, Trondheim, Norway). Strain P38-E01 T was isolated from the sediments of the Trondheim fjord, and phylogenetic analyses affiliated this strain with the genus Streptomyces, but it was not closely affiliated with other described species. The closest related type strains were Streptomyces daliensis YIM 31724 T (98.6%), Streptomyces rimosus subsp. rimosus ATCC 10970 T (98.4%), and Streptomyces sclerotialus NRRL ISP-5269 T (98.3%). Predominant fatty acids were C16:0 iso, C16:0, and Summed Feature 3, and the predominant respiratory quinones were MK-10(H6), MK-10(H4), and MK9(H4). The main polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphoglycolipid. The whole-cell sugars were glucose, ribose, and in minor amounts, mannose. The cell wall peptidoglycan contained LL-diaminopimelic acid. The draft genome has a size of 6.16 Mb, with a %G + C content of 71.4% and is predicted to contain at least 19 biosynthetic gene clusters encoding diverse secondary metabolites. Strain P38-E01 T was found to inhibit the growth of the pathogenic yeast Candida albicans ATCC 90028 and a number of Gram-positive bacterial human and plant pathogens. Metabolites extracted from cultures of P38-E01 T were analyzed by mass spectrometry, and it was found that the isolate produced the antifungal compound candicidin. Phenotypic and chemotaxonomic signatures, along with phylogenetic analyses, distinguished isolate P38-E01 T from its closest neighbors; thus, this isolate represents a novel species of the genus Streptomyces for which the name Streptomyces tardus sp. nov. (P38-E01 T = CCM 9049 T = DSM 111582 T ) is proposed.

15.
Antibiotics (Basel) ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356763

RESUMO

The problem of antibiotic resistance has become a challenge for our public health and society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics that are introduced to the market face the rise of resistant pathogens after a certain period of use. The relatively fast development of resistance against some antibiotics seems to be closely linked to their microbial origin and function in nature. Antibiotics in clinical use are merely products of microorganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has progressed with the evolution of the respective resistance mechanisms in microbes for billions of years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by pathogens through horizontal gene transfer. Natural products from bacteria are an important source of leads for drug development, and microbial natural products have contributed the most antibiotics in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such as redetection of known compounds and low compound yields consume significant resources. The number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the most promising sources for chemical novelty and bioactivity, employing the appropriate scientific tools. This can be done by first looking into under- or unexplored environments for bacterial isolates and by focusing on the promising candidates to reduce the number of subjects.

16.
Mar Drugs ; 19(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418911

RESUMO

Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.


Assuntos
Produtos Biológicos/farmacologia , Cianobactérias/química , Cromatografia Líquida de Alta Pressão , Cianobactérias/genética , Genoma Bacteriano , Genômica , Biologia Marinha , Espectrometria de Massas , Metabolômica , Família Multigênica , Filogenia , Clima Tropical
17.
Microbiol Res ; 244: 126652, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310352

RESUMO

Actinobacteria that inhabit lichen symbionts are considered a promising yet previously underexplored source of novel compounds. Here, for the first time, we conducted a comprehensive investigation with regard to strain isolation and identification of lichen-associated actinobacteria from Tibet Plateau, antimicrobial activity screening, biosynthetic genes detection, bioactive metabolites identification and activity prediction. A large number of culturable actinomycetes were isolated from lichens around Qinghai Lake, in Qinghai-Tibet Plateau. Twenty-seven strains with distinct morphological characteristics were preliminarily studied. 16S rRNA gene identification showed that 13 strains were new species. The PCR-screening of specific biosynthetic genes indicated that these 27 isolates had abundant intrinsic biosynthetic potential. The antimicrobial activity experiment screened out some potential biological control antagonistic bacteria. The metabolites of 13 strains of Streptomyces with antibacterial activity were analyzed by LC-HRMS, and further 18 compounds were identified by NMR and / or LC-HRMS. The identified compounds were mainly pyrrolidine and indole derivatives, as well as anthracyclines. Seven compounds were identified with less biological activity, then predicted and evaluated their biological activity. The predicted results showed that compound 2 had excellent inhibitory activity on HIV-1 reverse transcriptase. Overall, the results indicate actinobacteria isolated from unexploited plateau lichen are promising sources of biological active metabolite, which could provide important bioactive compounds as potential antibiotic drugs.


Assuntos
Actinobacteria/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Líquens/microbiologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/genética , Anti-Infecciosos/química , Biodiversidade , Cromatografia Líquida de Alta Pressão , Líquens/fisiologia , Espectrometria de Massas , Filogenia , Simbiose , Tibet
18.
Int J Mol Sci ; 13(5): 5917-5932, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754340

RESUMO

The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar) proved to be efficient for selective isolation, and "Micromonospora-Streptomyces" was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera) of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Poríferos/microbiologia , Metabolismo Secundário , Animais , China , Meios de Cultura/química , Genes Bacterianos , Genes Essenciais , Dados de Sequência Molecular , Oceanos e Mares , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA