Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38984918

RESUMO

OBJECTIVE: Examine associations between military blast exposures on hearing loss and self-reported hearing difficulties among Active-Duty Service Members (ADSM) and Veterans from the Noise Outcomes in Servicemembers Epidemiology (NOISE) study. STUDY DESIGN: Cross-sectional. SETTING: Multi-institutional tertiary referral centers. METHODS: Blast exposure was assessed with a comprehensive blast questionnaire. Outcome measures included pure-tone hearing thresholds; Speech Recognition in Noise Test; Hearing Handicap Inventory for Adults (HHIA); and Speech, Spatial and Qualities of Hearing Scale (SSQ)-12. RESULTS: Twenty-one percent (102/494) of ADSM and 36.8% (196/533) of Veterans self-reported blast exposure. Compared to ADSM without blast exposure, blast-exposed ADSM had increased odds of high frequency (3-8 kHz) and extended-high frequency (9-16 kHz) hearing loss (odds ratio [OR] = 2.5, CI: 1.3, 4.7; OR = 3.7, CI: 1.9, 7.0, respectively). ADSM and Veterans with blast exposure were more likely than their nonblast exposed counterparts to report hearing difficulty on the HHIA (OR = 1.9, CI: 1.1, 3.3; OR = 2.1, CI: 1.4, 3.2, respectively). Those with self-reported blast exposure also had lower SSQ-12 scores (ADSM mean difference = -0.6, CI: -1.0, -0.1; Veteran mean difference: -0.9, CI: -1.3, -0.5). CONCLUSION: Results suggest that blast exposure is a prevalent source of hearing injury in the military. We found that among ADSM, blast exposure was associated with hearing loss, predominately in the higher frequencies. Blast exposure was associated with poorer self-perceived hearing ability in ADSM and Veterans. IRB: #FWH20180143H Joint Base San Antonio (JBSA) Military Healthcare System; #3159/9495 Joint VA Portland Health Care System (VAPORHCS) Oregon Health and Science University (OHSU).

2.
Clin Neuropsychol ; : 1-23, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494345

RESUMO

Objective: The present study aimed to examine the impact of lifetime blast exposure (LBE) on neuropsychological functioning in service members and veterans (SMVs). Method: Participants were 282 SMVs, with and without history of traumatic brain injury (TBI), who were prospectively enrolled in a Defense and Veterans Brain Injury Center (DVBIC)-Traumatic Brain Injury Center of Excellence (TBICoE) Longitudinal TBI Study. A cross-sectional analysis of baseline data was conducted. LBE was based on two factors: Military Occupational Speciality (MOS) and SMV self-report. Participants were divided into three groups based on LBE: Blast Naive (n = 61), Blast + Low Risk MOS (n = 96), Blast + High Risk MOS (n = 125). Multivariate analysis of variance (MANOVA) was used to examine group differences on neurocognitive domains and the Minnesota Multiphasic Personality Inventory-2 Restructured Form. Results: There were no statistically significant differences in attention/working memory, processing speed, executive functioning, and memory (Fs < 1.75, ps > .1, ηp2s < .032) or in General Cognition (Fs < 0.95, ps > .3, ηp2s < .008). Prior to correction for covariates, lifetime blast exposure was related to Restructured Clinical (F(18,542) = 1.77, p = .026, ηp2 = .055), Somatic/Cognitive (F(10,550) = 1.99, p = .033, ηp2 = .035), and Externalizing Scales (F(8,552) = 2.17, p = .028, ηp2 = .030); however, these relationships did not remain significant after correction for covariates (Fs < 1.53, ps > .145, ηp2s < .032). Conclusions: We did not find evidence of a relationship between LBE and neurocognitive performance or psychiatric symptoms. This stands in contrast to prior studies demonstrating an association between lifetime blast exposure and highly sensitive blood biomarkers and/or neuroimaging. Overall, findings suggest the neuropsychological impact of lifetime blast exposure is minimal in individuals remaining in or recently retired from military service.

3.
J Neurotrauma ; 41(1-2): 186-198, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650835

RESUMO

The purpose of this study was to extend previous research by examining the relationship between lifetime blast exposure and neurobehavioral functioning after mild TBI (MTBI) by (a) using a comprehensive measure of lifetime blast exposure, and (b) controlling for the influence of post-traumatic stress disorder (PTSD). Participants were 103 United States service members and veterans (SMVs) with a medically documented diagnosis of MTBI, recruited from three military treatment facilities (74.8%) and community-based recruitment initiatives (25.2%, e.g., social media, flyers). Participants completed a battery of neurobehavioral measures 12 or more months post-injury (Neurobehavioral Symptom Inventory, PTSD-Checklist PCLC, TBI-Quality of Life), including the Blast Exposure Threshold Survey (BETS). The sample was classified into two lifetime blast exposure (LBE) groups: High (n = 57) and Low (n = 46) LBE. In addition, the sample was classified into four LBE/PTSD subgroups: High PTSD/High LBE (n = 38); High PTSD/Low LBE (n = 19); Low PTSD/High LBE (n = 19); and Low PTSD/Low LBE (n = 27). The High LBE group had consistently worse scores on all neurobehavioral measures compared with the Low LBE group. When controlling for the influence of PTSD (using ANCOVA), however, only a handful of group differences remained. When comparing measures across the four LBE/PTSD subgroups, in the absence of clinically meaningful PTSD symptoms (i.e., Low PTSD), participants with High LBE had worse scores on the majority of neurobehavioral measures (e.g., post-concussion symptoms, sleep, fatigue). When examining the total number of clinically elevated measures, the High LBE subgroup consistently had a greater number of clinically elevated scores compared with the Low LBE subgroup for the majority of comparisons (i.e., four to 15 or more elevated symptoms). In contrast, in the presence of clinically meaningful PTSD symptoms (i.e., High PTSD), there were no differences between High versus Low LBE subgroups for all measures. When examining the total number of clinically elevated measures, however, there were meaningful differences between High versus Low LBE subgroups for those comparisons that included a high number of clinically elevated scores (i.e., six to 10 or more), but not for a low number of clinically elevated scores (i.e., one to five or more). High LBE, as quantified using a more comprehensive measure than utilized in past research (i.e., BETS), was associated with worse overall neurobehavioral functioning after MTBI. This study extends existing literature showing that lifetime blast exposure, that is largely subconcussive, may negatively impact warfighter brain health and readiness beyond diagnosable brain injury.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Estados Unidos , Concussão Encefálica/complicações , Qualidade de Vida , Traumatismos por Explosões/complicações , Traumatismos por Explosões/diagnóstico , Encéfalo , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/complicações
4.
J Neurotrauma ; 41(5-6): 604-612, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37675903

RESUMO

Sub-concussive injuries have emerged as an important factor in the long-term brain health of athletes and military personnel. The objective of this study was to explore the relationship between service member and veterans (SMVs) lifetime blast exposure and recovery from a traumatic brain injury (TBI). A total of 558 SMVs with a history of TBI were examined. Lifetime blast exposure (LBE) was based on self-report (M = 79.4, standard deviation = 392.6; range = 0-7500) categorized into three groups: Blast Naive (n = 121), Low LBE (n = 223; LBE range 1-9), and High LBE (n = 214; LBE >10). Dependent variables were the Neurobehavioral Symptom Inventory (NSI) and Post-traumatic Stress Disorder Checklist-Civilian (PCL-C) and the Traumatic Brain Injury Quality of Life (TBI-QOL). Analyses controlled for demographic factors (age, gender, and race) as well as TBI factors (months since index TBI, index TBI severity, and total number lifetime TBIs). The Blast Naive group had significantly lower NSI and PCL-C scores compared with the Low LBE group and High LBE group, with small to medium effect sizes. On the TBI-QOL, the Blast Naïve group had better quality life on 10 of the 14 scales examined. The Low LBE did not differ from the High LBE group on the PCL-C, NSI, or TBI-QOL. Blast exposure over an SMV's career was associated with increased neurobehavioral and post-traumatic stress symptoms following a TBI. The influence of psychological trauma associated with blasts may be an important factor influencing symptoms as well as the accuracy of self-reported estimates of LBE.


Assuntos
Lesões Encefálicas Traumáticas , Militares , Veteranos , Humanos , Qualidade de Vida , Encéfalo
5.
J Neurotrauma ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38047526

RESUMO

Blast exposure can cause auditory deficits that have a lasting, significant impact on patients. Although the effects of blast on auditory functions localized to the ear have been well documented, the impact of blast on central auditory processing is largely undefined. Understanding the structural and functional alterations in the central nervous system (CNS) associated with blast injuries is crucial for unraveling blast-induced pathophysiological pathways and advancing development of therapeutic interventions. In this study, we used electrophysiology in combination with optogenetics assay, proteomic analysis, and morphological evaluation to investigate the impairment of synaptic connectivity in the auditory cortex (AC) of mice following blast exposure. Our results show that the long-range functional connectivity between the medial geniculate nucleus (MGN) and AC was impaired in the acute phase of blast injury. We also identified impaired synaptic transmission and dendritic spine alterations within 7 days of blast exposure, which recovered at 28 days post-blast. Additionally, proteomic analysis identified a few differentially expressed proteins in the cortex that are involved in synaptic signaling and plasticity. These findings collectively suggest that blast-induced alterations in the sound signaling network in the auditory cortex may underlie hearing deficits in the acute and sub-acute phases after exposure to shockwaves. This study may shed light on the perturbations underlying blast-induced auditory dysfunction and provide insights into the potential therapeutic windows for improving auditory outcomes in blast-exposed individuals.

6.
J Proteome Res ; 23(1): 397-408, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096401

RESUMO

Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100ß, PDGF, and DNA-polymerase-ß) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Substâncias Explosivas , Ratos , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Proteômica , Lesões Encefálicas Traumáticas/patologia , Hipocampo/patologia , Modelos Animais de Doenças
7.
J Neurotrauma ; 41(7-8): 942-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37950709

RESUMO

Exposure to blast overpressure has been a pervasive feature of combat-related injuries. Studies exploring the neurological correlates of repeated low-level blast exposure in career "breachers" demonstrated higher levels of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 and decreases in IL-10 within brain-derived extracellular vesicles (BDEVs). The current pilot study was initiated in partnership with the U.S. Special Operations Command (USSOCOM) to explore whether neuroinflammation is seen within special operators with prior blast exposure. Data were analyzed from 18 service members (SMs), inclusive of 9 blast-exposed special operators with an extensive career history of repeated blast exposures and 9 controls matched by age and duration of service. Neuroinflammation was assessed utilizing positron emission tomography (PET) imaging with [18F]DPA-714. Serum was acquired to assess inflammatory biomarkers within whole serum and BDEVs. The Blast Exposure Threshold Survey (BETS) was acquired to determine blast history. Both self-report and neurocognitive measures were acquired to assess cognition. Similarity-driven Multi-view Linear Reconstruction (SiMLR) was used for joint analysis of acquired data. Analysis of BDEVs indicated significant positive associations with a generalized blast exposure value (GBEV) derived from the BETS. SiMLR-based analyses of neuroimaging demonstrated exposure-related relationships between GBEV, PET-neuroinflammation, cortical thickness, and volume loss within special operators. Affected brain networks included regions associated with memory retrieval and executive functioning, as well as visual and heteromodal processing. Post hoc assessments of cognitive measures failed to demonstrate significant associations with GBEV. This emerging evidence suggests neuroinflammation may be a key feature of the brain response to blast exposure over a career in operational personnel. The common thread of neuroinflammation observed in blast-exposed populations requires further study.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Traumatismos por Explosões/complicações , Projetos Piloto , Doenças Neuroinflamatórias , Militares/psicologia , Explosões , Interleucina-6
8.
J Neurotrauma ; 41(7-8): 934-941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032755

RESUMO

The Blast Exposure Threshold Survey (BETS) is a recently developed and promising new self-report measure of lifetime blast exposure (LBE). However, there are no studies that have examined the psychometric properties of the BETS, which currently limits its clinical utility. The purpose of this study was to examine the convergent and discriminant validity of the BETS by comparing the BETS Generalized Blast Exposure Value (GBEV) to six variables hypothesized to be associated with LBE (i.e., single-item LBE, combat exposure, years in the military, number of combat deployments, and military occupation specialty [MOS]) and three variables hypothesized not to be associated with LBE (i.e., age at the time of injury, estimated pre-morbid Full-Scale Intelligence Quotient [FSIQ], and resilience). Participants were 202 United States service members and veterans prospectively enrolled from three military medical treatment facilities (68.7%) and via community recruitment initiatives (31.3%). Participants completed the BETS, Combat Exposure Scale (CES), Deployment Risk and Resiliency Inventory-2 Combat Experiences (DRRI-2 CE), Traumatic Brain Injury-Quality of Life Resilience scale, and a brief structured interview. For some analyses, participants were classified into two blast risk MOS groups: high (n = 89) and low (n = 94). The BETS GBEV was not significantly correlated with all three non-blast related variables (rs = 0.01 to rs = -0.12). In contrast, GBEV was significantly (p < 0.001) associated with all blast-related variables; single-item LBE (rs = 0.76), CES (rs = 0.58), number of combat deployments (rs = 0.53), DRRI-2 CE (rs = 0.48), and high blast risk MOS (r = 0.36, medium effect size). However, a stronger relationship was found between the blast-related variables and three modified GBEV scores when excluding some small weapons categories; single-item LBE (rs = 0.80-0.82), CES (rs = 0.64-0.67), number of combat deployments (rs = 0.56), DRRI-2 CE (rs = 0.51-0.53), and high blast risk MOS (r = 0.42-0.49, medium-large effect size). This is the first study to examine the psychometric properties of the BETS. Overall, these results offer support for the convergent and discriminant validity of the BETS. In order to ensure that the BETS can be confidently used as a valid and reliable measure of LBE, more research is needed to further examine the psychometric properties of the test, particularly with regard to the establishment of test-retest reliability.


Assuntos
Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Estados Unidos/epidemiologia , Qualidade de Vida , Reprodutibilidade dos Testes , Psicometria
9.
J Neurotrauma ; 41(7-8): 1000-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905505

RESUMO

Mild concussive events without loss of consciousness are typically left untreated and can result in neurological abnormalities at later stages of life. No systematic studies have been carried out to determine the effect of concussion or repeated mild concussive episodes on brain vulnerability towards blast exposure. We have evaluated the effect of repeated mild concussive events on the vulnerability of brain to blast exposure using neurobehavioral functional assessments. Rats were subjected to either repeated mild concussive impacts (two impacts 1 week apart using a modified Marmarou weight drop model), a single blast exposure (19 psi using an advanced blast simulator), or a single blast exposure one day after the second mild concussive impact. Neurobehavioral changes were monitored using rotating pole test, open field exploration test, and novel object recognition test. Rotating pole test results indicated that vestibulomotor function was unaffected by blast or repeated mild concussive impacts, but significant impairment was observed in the blast exposed animals who had prior repeated mild concussive impacts. Novel object recognition test revealed short-term memory loss at 1 month post-blast only in rats subjected to both repeated mild concussive impacts and blast. Horizontal activity count, ambulatory activity count, center time and margin time legacies in the open field exploratory activity test indicated that only those rats exposed to both repeated mild concussive impacts and blast develop anxiety-like behaviors at both acute and sub-acute time-points. The results indicate that a history of repeated mild concussive episodes heightens brain vulnerability to blast exposure.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Ratos , Animais , Humanos , Concussão Encefálica/complicações , Encéfalo , Amnésia , Campanha Afegã de 2001- , Traumatismos por Explosões/complicações
10.
Metabolites ; 13(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233679

RESUMO

Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.

11.
NMR Biomed ; : e4934, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940008

RESUMO

There is a requirement for an objective method to determine a safe level of low-level military occupational blast, having recognised it can lead to neurological damage. The purpose of the current study was to evaluate the effect of artillery firing training on the neurochemistry of frontline soldiers using two-dimensional (2D) COrrelated SpectroscopY (2D COSY) in a 3-T clinical MR scanner. Ten men considered to be of sound health were evaluated before and after a week-long live firing exercise in two ways. Prior to the live fire exercise, all participants were screened by a clinical psychologist using a combination of clinical interviews and psychometric tests, and were then scanned with 3-T MRI. The protocols included T1- and T2-weighted images for diagnostic reporting and anatomical localisation and 2D COSY to record any neurochemical effects from the firing. No changes to the structural MRI were recorded. Nine substantive and statistically significant changes in the neurochemistry were recorded as a consequence of firing training. Glutamine and glutamate, glutathione, and two of the seven fucose-α (1-2)-glycans were significantly increased. N-acetyl aspartate, myo-inositol + creatine, and glycerol were also increased. Significant decreases were recorded for the glutathione cysteine moiety and tentatively assigned glycan with a 1-6 linkage (F2: 4.00, F1: 1.31 ppm). These molecules are part of three neurochemical pathways at the terminus of the neurons providing evidence of early markers of disruption to neurotransmission. Using this technology, the extent of deregulation can now be monitored for each frontline defender on a personalised basis. The capacity to monitor early a disruption in neurotransmitters, using the 2D COSY protocol, can observe the effect of firing and may be used to prevent or limit these events.

12.
J Neurotrauma ; 40(3-4): 395-407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36205587

RESUMO

Auditory processing disorder is the most common problem affecting veterans after blast exposure, but the distinct impacts of blast-related traumatic brain injury and blast-related hearing loss are unknown. Independently, both hearing loss and blast exposure affect the entire auditory processing pathway at the molecular and physiological levels. Here, we identified distinct changes to the primary auditory cortex (AI) and temporal processing in mice following blast exposure both with and without protected hearing. Our results show that blast-exposure alone activated microglia in AI, but hearing loss was required for reductions in the density of parvalbumin-expressing interneurons. Although blast exposure impaired the temporal following response, these impairments were more severe with concurrent unilateral hearing loss, further resulting in impairments in behavioral gap detection. Taken together, these results indicate that protecting hearing during blast exposure can prevent most impairments to auditory processing but does not fully protect temporal processing.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Perda Auditiva , Animais , Camundongos , Parvalbuminas , Traumatismos por Explosões/complicações , Percepção Auditiva/fisiologia , Perda Auditiva/etiologia , Lesões Encefálicas Traumáticas/complicações , Neurônios
13.
BMC Med Res Methodol ; 22(1): 317, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513998

RESUMO

BACKGROUND: Subconcussive blast exposure during military training has been the subject of both anecdotal concerns and reports in the medical literature, but prior studies have often been small and have used inconsistent methods. METHODS: This paper presents the methodology employed in INVestigating traIning assoCiated blasT pAthology (INVICTA) to assess a wide range of aspects of brain function, including immediate and delayed recall, gait and balance, audiologic and oculomotor function, cerebral blood flow, brain electrical activity and neuroimaging and blood biomarkers. RESULTS: A number of the methods employed in INVICTA are relatively easy to reproducibly utilize, and can be completed efficiently, while other measures require greater technical expertise, take longer to complete, or may have logistical challenges. CONCLUSIONS: This presentation of methods used to assess the impact of blast exposure on the brain is intended to facilitate greater uniformity of data collection in this setting, which would enable comparison between different types of blast exposure and environmental circumstances, as well as to facilitate meta-analyses and syntheses across studies.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Humanos , Traumatismos por Explosões/patologia , Concussão Encefálica/patologia , Biomarcadores
14.
J Assoc Res Otolaryngol ; 23(5): 603-616, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906449

RESUMO

High-intensity sound or blast-induced hearing impairment is a common injury for Service members. Epidemiology studies revealed that the blast-induced hearing loss is associated with the traumatic brain injury (TBI), but the mechanisms of the formation and prevention of auditory injuries require further investigation. Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported as a potential treatment strategy for TBI-caused memory deficits; however, there is no study on therapeutics of GLP-1R for blast-induced hearing damage. This paper reports our current study on progressive hearing damage after repeated exposures to low-level blasts in the animal model of chinchilla and the mitigation of hearing damage using liraglutide. Chinchillas were divided into three groups (N = 7 each): blast control, pre-blast treatment, and post-blast treatment. All animals were exposed to six consecutive blasts at the level of 3-5 psi (21-35 kPa) on Day 1. The auditory brainstem response (ABR) was measured on Day 1 (pre- and post-blast) and Days 4, 7, and 14 after blast exposure. Upon the completion of the experiment on Day 14, the brain tissues of animals were harvested for immunofluorescence studies. Significant damage was revealed in blast-exposed chinchillas by increased ABR thresholds, decreased ABR wave I amplitudes, and cell apoptosis in the inferior colliculus in the blast control chinchillas. Treatment with liraglutide appeared to reduce the severity of blast-induced hearing injuries as observed from the drug-treated chinchillas comparing to the blast controls. This study bridges the gap between TBI and hearing impairment and suggests a possible intervention for blast-induced hearing loss for Service members.


Assuntos
Traumatismos por Explosões , Perda Auditiva Provocada por Ruído , Perda Auditiva , Animais , Chinchila , Liraglutida , Audição , Potenciais Evocados Auditivos do Tronco Encefálico , Traumatismos por Explosões/complicações , Traumatismos por Explosões/prevenção & controle , Modelos Animais de Doenças , Perda Auditiva/etiologia , Perda Auditiva/prevenção & controle , Perda Auditiva Provocada por Ruído/etiologia , Limiar Auditivo
15.
Stress Health ; 38(1): 31-37, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34021693

RESUMO

Electrodermal activity (EDA)-a measure of electrical skin conductance reflecting (exclusive) sympathetic control of the eccrine sweat gland-holds promise as an indicator of central sympathetic activation. The aim of this study was to determine whether combat and blast exposure modulate the EDA response to acute exercise stress in specialised military men. Fifty-one men (age M = 36.1, SD = 6.5) participated in this study as part of the Explosive Ordnance Disposal Operational Health Surveillance System. The EDA complex (i.e., tonic + phasic conductance) was continuously measured throughout a maximal effort, graded exercise test. As expected, exercise stress resulted in measurable, stepwise increases in EDA before tapering at higher exercise intensities. Individuals with more substantial combat exposure and those with blast exposure demonstrated blunted EDA patterns in comparison to their low/nonexposed counterparts. This blunted pattern might imply sub-optimal sympathetic nervous system function in the exposed cohorts and enhances our knowledge of factors influencing resilience in these men.


Assuntos
Militares , Exercício Físico , Teste de Esforço , Resposta Galvânica da Pele , Humanos , Masculino , Sistema Nervoso Simpático
16.
Front Neurol ; 12: 746370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712199

RESUMO

Previous findings have indicated that pain relieving medications such as opioids and non-steroidal anti-inflammatory drugs (NSAIDs) may be neuroprotective after traumatic brain injury in rodents, but only limited studies have been performed in a blast-induced traumatic brain injury (bTBI) model. In addition, many pre-clinical TBI studies performed in rodents did not use analgesics due to the possibility of neuroprotection or other changes in cognitive, behavioral, and pathology outcomes. To examine this in a pre-clinical setting, we examined the neurobehavioral changes in rats given a single pre-blast dose of meloxicam, buprenorphine, or no pain relieving medication and exposed to tightly-coupled repeated blasts in an advanced blast simulator and evaluated neurobehavioral functions up to 28 days post-blast. A 16.7% mortality rate was recorded in the rats treated with buprenorphine, which might be attributed to the physiologically depressive side effects of buprenorphine in combination with isoflurane anesthesia and acute brain injury. Rats given buprenorphine, but not meloxicam, took more time to recover from the isoflurane anesthesia given just before blast. We found that treatment with meloxicam protected repeated blast-exposed rats from vestibulomotor dysfunctions up to day 14, but by day 28 the protective effects had receded. Both pain relieving medications seemed to promote short-term memory deficits in blast-exposed animals, whereas vehicle-treated blast-exposed animals showed only a non-significant trend toward worsening short-term memory by day 27. Open field exploratory behavior results showed that blast exposed rats treated with meloxicam engaged in significantly more locomotor activities and possibly a lesser degree of responses thought to reflect anxiety and depressive-like behaviors than any of the other groups. Rats treated with analgesics to alleviate possible pain from the blast ate more than their counterparts that were not treated with analgesics, which supports that both analgesics were effective in alleviating some of the discomfort that these rats potentially experienced post-blast injury. These results suggest that meloxicam and, to a lesser extent buprenorphine alter a variety of neurobehavioral functions in a rat bTBI model and, because of their impact on these neurobehavioral changes, may be less than ideal analgesic agents for pre-clinical studies evaluating these neurobehavioral responses after TBI.

17.
J Neurotrauma ; 38(20): 2801-2810, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34210150

RESUMO

Blast-induced traumatic brain injury (bTBI) has been documented as a significant concern for both military and civilian populations in response to the increased use of improvised explosive devices. Identifying biomarkers that could aid in the proper diagnosis and assessment of both acute and chronic bTBI is in urgent need since little progress has been made towards this goal. Addressing this knowledge gap is especially important in military veterans who are receiving assessment and care often years after their last blast exposure. Neuron-specific phosphorylated neurofilament heavy chain protein (pNFH) has been successfully evaluated as a reliable biomarker of different neurological disorders, as well as brain trauma resulting from contact sports and acute stages of brain injury of different origin. In the present study, we have evaluated the utility of pNFH levels measured in the cerebrospinal fluid (CSF) as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast exposures using experimental rats. The pNFH levels increased at 24 h, returned to normal levels at 1 month, but increased again at 6 months and 1 year post-blast exposures. No significant changes were observed between single and repeated blast-exposed groups. To determine whether the observed increase of pNFH in CSF corresponded with its levels in the brain, we performed fluorescence immunohistochemistry in different brain regions at the four time-points evaluated. We observed decreased pNFH levels in those brain areas at 24 h, 6 months, and 1 year. The results suggest that blast exposure causes axonal degeneration at acute and chronic stages resulting in the release of pNFH, the abundant neuronal cytoskeletal protein. Moreover, the changes in pNFH levels in the CSF negatively correlated with the neurobehavioral functions in the rats, reinforcing suggestions that CSF levels of pNFH can be a suitable biomarker of bTBI.


Assuntos
Traumatismos por Explosões/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Traumatismos por Explosões/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
18.
Hear Res ; 407: 108292, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214947

RESUMO

The use of explosive devices in war and terrorism has increased exposure to concussive blasts among both military personnel and civilians, which can cause permanent hearing and balance deficits that adversely affect survivors' quality of life. Significant knowledge gaps on the underlying etiology of blast-induced hearing loss and balance disorders remain, especially with regard to the effect of blast exposure on the vestibular system, the impact of multiple blast exposures, and long-term recovery. To address this, we investigated the effects of blast exposure on the inner ear using a mouse model in conjunction with a high-fidelity blast simulator. Anesthetized animals were subjected to single or triple blast exposures, and physiological measurements and tissue were collected over the course of recovery for up to 180 days. Auditory brainstem responses (ABRs) indicated significantly elevated thresholds across multiple frequencies. Limited recovery was observed at low frequencies in single-blasted mice. Distortion Product Otoacoustic Emissions (DPOAEs) were initially absent in all blast-exposed mice, but low-amplitude DPOAEs could be detected at low frequencies in some single-blast mice by 30 days post-blast, and in some triple-blast mice at 180 days post-blast. All blast-exposed mice showed signs of Tympanic Membrane (TM) rupture immediately following exposure and loss of outer hair cells (OHCs) in the basal cochlear turn. In contrast, the number of Inner Hair Cells (IHCs) and spiral ganglion neurons was unchanged following blast-exposure. A significant reduction in IHC pre-synaptic puncta was observed in the upper turns of blast-exposed cochleae. Finally, we found no significant loss of utricular hair cells or changes in vestibular function as assessed by vestibular evoked potentials. Our results suggest that (1) blast exposure can cause severe, long-term hearing loss which may be partially due to slow TM healing or altered mechanical properties of healed TMs, (2) traumatic levels of sound can still reach the inner ear and cause basal OHC loss despite middle ear dysfunction caused by TM rupture, (3) blast exposure may result in synaptopathy in humans, and (4) balance deficits after blast exposure may be primarily due to traumatic brain injury, rather than damage to the peripheral vestibular system.


Assuntos
Perda Auditiva , Emissões Otoacústicas Espontâneas , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Externas , Qualidade de Vida , Sistema Vestibular
19.
Neurotrauma Rep ; 2(1): 180-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013219

RESUMO

The potential effects of blast exposure on the brain health of military personnel have raised concerns and led to increased surveillance of blast exposures. Neuroimaging studies have reported white matter abnormalities in brains of service members with a history of blast exposure. However, blast effects on white matter microstructure remain poorly understood. As a novel approach to screen for white matter effects, transgenic mice that express fluorescent reporters to sensitively detect axon damage and myelin remodeling were exposed to simulated repetitive blasts (once/day on 5 consecutive days). Axons were visualized using Thy1-YFP-16 reporter mice that express yellow fluorescent protein (YFP) in a broad spectrum of neurons. Swelling along damaged axons forms varicosities that fill with YFP. The frequency and size of axonal varicosities were significantly increased in the corpus callosum (CC) and cingulum at 3 days after the final blast exposure, versus in sham procedures. CC immunolabeling for reactive astrocyte and microglial markers was also significantly increased. NG2CreER;mTmG mice were given tamoxifen (TMX) on days 2 and 3 after the final blast to induce fluorescent labeling of newly synthesized myelin membranes, indicating plasticity and/or repair. Myelin synthesis was not altered in the CC over the intervening 4 or 8 weeks after repetitive blast exposure. These experiments show the advantages of transgenic reporter mice for analysis of white matter injury that detects subtle, diffuse axon damage and the dynamic nature of myelin sheaths. These results show that repetitive low-level blast exposures produce infrequent but significant axon damage along with neuroinflammation in white matter.

20.
Front Neurol ; 12: 652190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841318

RESUMO

Blast-induced auditory dysfunctions including tinnitus are the most prevalent disabilities in service members returning from recent combat operations. Most of the previous studies were focused on the effect of blast exposure on the peripheral auditory system and not much on the central auditory signal-processing regions in the brain. In the current study, we have exposed rats to single and tightly coupled repeated blasts and examined the degeneration of neuronal cytoskeletal elements using silver staining in the central auditory signal-processing regions in the brain at 24 h, 14 days, 1 month, 6 months, and 1 year. The brain regions evaluated include cochlear nucleus, lateral lemniscus, inferior colliculus, medial geniculate nucleus, and auditory cortex. The results obtained indicated that a significant increase in degeneration of neuronal cytoskeletal elements was observed only in the left and right cochlear nucleus. A significant increase in degeneration of neuronal cytoskeletal elements was observed in the cochlear nucleus at 24 h and persisted through 1 year, suggesting acute and chronic neuronal degeneration after blast exposure. No statistically significant differences were observed between single and repeated blasts. The localized degeneration of neuronal cytoskeletal elements in the cochlear nucleus suggests that the damage could be caused by transmission of blast shockwaves/noise through the ear canal and that use of suitable ear protection devices can protect against acute and chronic central auditory signal processing defects including tinnitus after blast exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA