Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Epigenetics ; 16(1): 74, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840168

RESUMO

BACKGROUND: Epigenetic modifications, particularly DNA methylation (DNAm) in cord blood, are an important biological marker of how external exposures during gestation can influence the in-utero environment and subsequent offspring development. Despite the recognized importance of DNAm during gestation, comparative studies to determine the consistency of these epigenetic signals across different ethnic groups are largely absent. To address this gap, we first performed epigenome-wide association studies (EWAS) of gestational age (GA) using newborn cord blood DNAm comparatively in a white European (n = 342) and a South Asian (n = 490) birth cohort living in Canada. Then, we capitalized on established cord blood epigenetic GA clocks to examine the associations between maternal exposures, offspring characteristics and epigenetic GA, as well as GA acceleration, defined as the residual difference between epigenetic and chronological GA at birth. RESULTS: Individual EWASs confirmed 1,211 and 1,543 differentially methylated CpGs previously reported to be associated with GA, in white European and South Asian cohorts, respectively, with a similar distribution of effects. We confirmed that Bohlin's cord blood GA clock was robustly correlated with GA in white Europeans (r = 0.71; p = 6.0 × 10-54) and South Asians (r = 0.66; p = 6.9 × 10-64). In both cohorts, Bohlin's clock was positively associated with newborn weight and length and negatively associated with parity, newborn female sex, and gestational diabetes. Exclusive to South Asians, the GA clock was positively associated with the newborn ponderal index, while pre-pregnancy weight and gestational weight gain were strongly predictive of increased epigenetic GA in white Europeans. Important predictors of GA acceleration included gestational diabetes mellitus, newborn sex, and parity in both cohorts. CONCLUSIONS: These results demonstrate the consistent DNAm signatures of GA and the utility of Bohlin's GA clock across the two populations. Although the overall pattern of DNAm is similar, its connections with the mother's environment and the baby's anthropometrics can differ between the two groups. Further research is needed to understand these unique relationships.


Assuntos
Povo Asiático , Metilação de DNA , Epigênese Genética , Sangue Fetal , Idade Gestacional , População Branca , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Povo Asiático/genética , Canadá , Estudos de Coortes , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Sangue Fetal/química , Estudo de Associação Genômica Ampla/métodos , População Branca/genética
2.
Alzheimers Dement ; 20(2): 1050-1062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37856321

RESUMO

INTRODUCTION: DNA microarray-based studies report differentially methylated positions (DMPs) in blood between late-onset dementia due to Alzheimer's disease (AD) and cognitively unimpaired individuals, but interrogate < 4% of the genome. METHODS: We used whole genome methylation sequencing (WGMS) to quantify DNA methylation levels at 25,409,826 CpG loci in 281 blood samples from 108 AD and 173 cognitively unimpaired individuals. RESULTS: WGMS identified 28,038 DMPs throughout the human methylome, including 2707 differentially methylated genes (e.g., SORCS3, GABA, and PICALM) encoding proteins in biological pathways relevant to AD such as synaptic membrane, cation channel complex, and glutamatergic synapse. One hundred seventy-three differentially methylated blood-specific enhancers interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD. DISCUSSION: WGMS identifies differentially methylated CpGs in known and newly detected genes and enhancers in blood from persons with and without AD. HIGHLIGHTS: Whole genome DNA methylation levels were quantified in blood from persons with and without Alzheimer's disease (AD). Twenty-eight thousand thirty-eight differentially methylated positions (DMPs) were identified. Two thousand seven hundred seven genes comprise DMPs. Forty-eight of 75 independent genetic risk loci for AD have DMPs. One thousand five hundred sixty-eight blood-specific enhancers comprise DMPs, 173 of which interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD.


Assuntos
Doença de Alzheimer , Metilação de DNA , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Epigênese Genética , Sequenciamento Completo do Genoma
3.
Am J Med Genet A ; 191(12): 2913-2920, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37715344

RESUMO

Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism. Furthermore, previous reports suggest that saliva is suboptimal for detecting copy number variation. We therefore aimed to evaluate saliva DNA for single nucleotide polymorphism (SNP) CMA in autistic children. Saliva DNA from 48 probands and parents (n = 133) was obtained with a mean concentration of 141.7 ng/µL. SNP CMA was successful in 131/133 (98.5%) patients from which we correlated the size and accuracy of a copy number variant(s) called between a proband and carrier parent, and for a subgroup (n = 17 probands) who had a previous CMA using blood sample. There were no discordant copy number variant results between the proband and carrier parent, or the subgroup, however, there was an acceptable mean size difference of 0.009 and 0.07 Mb, respectively. Our findings demonstrate that saliva DNA can be an alternative for SNP CMA in autism, which avoids blood collection with significant implications for clinical practice guidelines.


Assuntos
Transtorno Autístico , Criança , Humanos , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Saliva , Polimorfismo de Nucleotídeo Único , Análise em Microsséries , DNA
4.
Front Genet ; 14: 1175864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388929

RESUMO

Objective: DNA methylation plays a potential role in the pathogenesis of Alzheimer's disease (AD). However, little is known about the global changes of blood leukocyte DNA methylome profiles from Chinese patients with mild cognitive impairment (MCI) and with AD, or the specific DNA methylation-based signatures associated with MCI and AD. In this study, we sought to dissect the characteristics of blood DNA methylome profiles in MCI- and AD-affected Chinese patients with the aim of identifying novel DNA methylation biomarkers for AD. Methods: In this study, we profiled the DNA methylome of peripheral blood leukocytes from 20 MCI- and 20 AD-affected Chinese patients and 20 cognitively healthy controls (CHCs) with the Infinium Methylation EPIC BeadChip array. Results: We identified significant alterations of the methylome profiles in MCI and AD blood leukocytes. A total of 2,582 and 20,829 CpG sites were significantly and differentially methylated in AD and MCI compared with CHCs (adjusted p < 0.05), respectively. Furthermore, 441 differentially methylated positions (DMPs), aligning to 213 unique genes, were overlapped by the three comparative groups of AD versus CHCs, MCI versus CHCs, and AD versus MCI, of which 6 and 5 DMPs were continuously hypermethylated and hypomethylated in MCI and AD relative to CHCs (adjusted p < 0.05), respectively, such as FLNC cg20186636 and AFAP1 cg06758191. The DMPs with an area under the curve >0.900, such as cg18771300, showed high potency for predicting MCI and AD. In addition, gene ontology and pathway enrichment results showed that these overlapping genes were mainly involved in neurotransmitter transport, GABAergic synaptic transmission, signal release from synapse, neurotransmitter secretion, and the regulation of neurotransmitter levels. Furthermore, tissue expression enrichment analysis revealed a subset of potentially cerebral cortex-enriched genes associated with MCI and AD, including SYT7, SYN3, and KCNT1. Conclusion: This study revealed a number of potential biomarkers for MCI and AD, also highlighted the presence of epigenetically dysregulated gene networks that may engage in the underlying pathological events resulting in the onset of cognitive impairment and AD progression. Collectively, this study provides prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.

5.
Animals (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35739902

RESUMO

Anaplasma spp. are important tick-borne pathogens endangering the health of humans and various animals. Although several studies have reported Anaplasma infection in livestock in China, little is known about the impact of production categories on the occurrence of Anaplasma species. In the present study, PCR tools targeting the 16S rRNA and msp4 genes were applied to investigate the prevalence of Anaplasma spp. in 509 blood samples of dairy (n = 249), cashmere (n = 139), and meat (n = 121) goats from Shaanxi province. The prevalence of Anaplasma spp. was 58.5% (298/509) in goats, and significant differences (p < 0.001) were identified in the prevalence among production categories, with the highest in meat goats (84.3%, 102/121), followed by cashmere goats (58.3%, 81/139) and dairy goats (46.2%, 115/249). Significant differences (p < 0.001) in prevalence were also found among sampling sites and age groups. Meanwhile, the prevalence was 36.9% (188/509) for A. phagocytophilum, 36.1% (184/509) for A. bovis, and 11.0% (56/509) for A. ovis, and significant differences (p < 0.001) in prevalence of A. phagocytophilum, A. bovis and A. ovis were recognized among production categories and sampling sites. A. phagocytophilum, A. bovis and A. ovis were dominant species in meat, dairy, and cashmere goats, respectively, and A. ovis was absent in meat goats. Co-infections were found in 124 (24.4%) investigated samples. Goats aged < 2, 3−6, and 7−12 months, and goats from Qingjian and Zhenba were risk factors associated with the occurrence of Anaplasma. Phylogenetic analysis indicated separate clades for the distribution of A. phagocytophilum from different ruminant, reflecting potential host adaption within this species. This study reported the colonization occurrence of Anaplasma spp. among production categories in goats in Shaanxi province and enriched our knowledge on the transmission of Anaplasma spp. in goats in China. Considering the existence of zoonotic A. phagocytophilum in goats in this study and previous reports, interventions based on One Health are needed to be developed to control the transmission of Anaplasma spp. between humans and animals.

6.
Clin Epigenetics ; 14(1): 76, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681206

RESUMO

Considerable effort has been spent on lowering and maintaining the epigenetic age. However, the extent to which epigenetic age fluctuates under normal conditions is poorly understood. Therefore, we analyzed methylation data from monocytes and peripheral blood mononuclear cells collected from two Japanese men. The ranges of the Pan-tissue, Skin and blood, and DNAm PhenoAge epigenetic age during 3 months were ≥ 5.62, ≥ 3.04, and ≥ 8.23 years, and the maximum daily changes were 5.21, 3.20, and 6.53 years, respectively. These fluctuations were not suppressed by correcting for cell-type composition. Although the underlying biological mechanism remains unclear, there was a nonnegligible degree of age fluctuation which should inform personalized clinical applications.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Epigenômica , Humanos , Lactente , Leucócitos Mononucleares , Masculino , Monócitos
7.
Front Med (Lausanne) ; 9: 864570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433752

RESUMO

Background and objective: This pilot study aimed to identify potential blood DNA methylation (BDM) biomarker genes for the diagnosis of liver fibrosis in non-alcoholic fatty liver disease (NAFLD). Methods: We included a total of 16 NAFLD patients with significant (SLF, liver fibrosis stage ≥ 2) and 16 patients with non-significant liver fibrosis (NSLF, fibrosis stages 0-1). The association between BDM and liver fibrosis was analyzed. Genes were selected based on a stepwise-filtering with CpG islands containing significant differentially methylated probes. Results: The two groups of patients were distinguishable through both t-distributed stochastic neighbor embedding (t-SNE) analysis and unsupervised hierarchical clustering analysis based on their BDM status. BDM levels were significantly higher in the NSLF group than in the SLF group. The methylation levels in the island and shelf regions were also significantly higher in the NSLF group, as well as the methylation levels in the first exon, 3'-untranslated region, body, ExonBnd, non-intergenic region, transcription start site (TSS)1500, and TSS200 regions (all p < 0.05). BDM status was associated with greater histological liver fibrosis, but not with age, sex, or other histological features of NAFLD (p < 0.05). The methylation levels of the hypomethylated CpG island region of CISTR, IFT140, and RGS14 genes were increased in the NSLF group compared to the SLF group (all p < 0.05). Conclusion: BDM may stratify NAFLD patients with significant and non-significant liver fibrosis. The CISTR, IFT140, and RGS14 genes are potential novel candidate BDM biomarkers for liver fibrosis and these pilot data suggest further work on BDM biomarkers is warranted.

8.
Toxics ; 10(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448418

RESUMO

DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals-arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)-with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2'-deoxycytidine (mC) and 5-hydroxymethyl-2'-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb.

9.
Clin Epigenetics ; 13(1): 219, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903243

RESUMO

BACKGROUND: One of the fundamental assumptions of DNA methylation in clinical epigenetics is that DNA methylation status can change over time with or without interplay with environmental and clinical conditions. However, little is known about how DNA methylation status changes over time under ordinary environmental and clinical conditions. In this study, we revisited the high frequency longitudinal DNA methylation data of two Japanese males (24 time-points within three months) and characterized the longitudinal dynamics. RESULTS: The results showed that the majority of CpGs on Illumina HumanMethylation450 BeadChip probe set were longitudinally stable over the time period of three months. Focusing on dynamic and stable CpGs extracted from datasets, dynamic CpGs were more likely to be reported as epigenome-wide association study (EWAS) markers of various traits, especially those of immune- and inflammatory-related traits; meanwhile, the stable CpGs were enriched in metabolism-related genes and were less likely to be EWAS markers, indicating that the stable CpGs are stable both in the short-term within individuals and under various environmental and clinical conditions. CONCLUSIONS: This study indicates that CpGs with different stabilities are involved in different functions and traits, and thus, they are potential indicators that can be applied for clinical epigenetic studies to outline underlying mechanisms.


Assuntos
Metilação de DNA/genética , Epigenômica/métodos , Epigenômica/normas , Humanos
10.
Genome Med ; 13(1): 53, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823916

RESUMO

BACKGROUND: It is well-established that cancer treatment substantially increases the risk of long-term adverse health outcomes among childhood cancer survivors. However, there is limited research on the underlying mechanisms. To elucidate the pathophysiology and a possible causal pathway from treatment exposures to cardiometabolic conditions, we conducted epigenome-wide association studies (EWAS) to identify the DNA methylation (DNAm) sites associated with cancer treatment exposures and examined whether treatment-associated DNAm sites mediate associations between specific treatments and cardiometabolic conditions. METHODS: We included 2052 survivors (median age 33.7 years) of European ancestry from the St. Jude Lifetime Cohort Study, a retrospective hospital-based study with prospective clinical follow-up. Cumulative doses of chemotherapy and region-specific radiation were abstracted from medical records. Seven cardiometabolic conditions were clinically assessed. DNAm profile was measured using MethylationEPIC BeadChip with blood-derived DNA. RESULTS: By performing multiple treatment-specific EWAS, we identified 935 5'-cytosine-phosphate-guanine-3' (CpG) sites mapped to 538 genes/regions associated with one or more cancer treatments at the epigenome-wide significance level (p < 9 × 10-8). Among the treatment-associated CpGs, 8 were associated with obesity, 63 with hypercholesterolemia, and 17 with hypertriglyceridemia (false discovery rate-adjusted p < 0.05). We observed substantial mediation by methylation at four independent CpGs (cg06963130, cg21922478, cg22976567, cg07403981) for the association between abdominal field radiotherapy (abdominal-RT) and risk of hypercholesterolemia (70.3%) and by methylation at three CpGs (cg19634849, cg13552692, cg09853238) for the association between abdominal-RT and hypertriglyceridemia (54.6%). In addition, three CpGs (cg26572901, cg12715065, cg21163477) partially mediated the association between brain-RT and obesity with a 32.9% mediation effect, and two CpGs mediated the association between corticosteroids and obesity (cg22351187, 14.2%) and between brain-RT and hypertriglyceridemia (cg13360224, 10.5%). Notably, several mediator CpGs reside in the proximity of well-established dyslipidemia genes: cg21922478 (ITGA1) and cg22976567 (LMNA). CONCLUSIONS: In childhood cancer survivors, cancer treatment exposures are associated with DNAm patterns present decades following the exposure. Treatment-associated DNAm sites may mediate the causal pathway from specific treatment exposures to certain cardiometabolic conditions, suggesting the utility of DNAm sites as risk predictors and potential mechanistic targets for future intervention studies.


Assuntos
Sobreviventes de Câncer , Fatores de Risco Cardiometabólico , Metilação de DNA/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Resultado do Tratamento
11.
Pathogens ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244645

RESUMO

Bacterial canine vector-borne diseases are responsible for some of the most life-threatening conditions of dogs in the tropics and are typically poorly researched with some presenting a zoonotic risk to cohabiting people. Next-generation sequencing based methodologies have been demonstrated to accurately characterise a diverse range of vector-borne bacteria in dogs, whilst also proving to be more sensitive than conventional PCR techniques. We report two improvements to a previously developed metabarcoding tool that increased the sensitivity and diversity of vector-borne bacteria detected from canine blood. Firstly, we developed and tested a canine-specific blocking primer that prevents cross-reactivity of bacterial primer amplification on abundant canine mitochondrial sequences. Use of our blocking primer increased the number of canine vector-borne infections detected (five more Ehrlichia canis and three more Anaplasma platys infections) and increased the diversity of bacterial sequences found. Secondly, the DNA extraction kit employed can have a significant effect on the bacterial community characterised. Therefore, we compared four different DNA extraction kits finding the Qiagen DNeasy Blood and Tissue Kit to be superior for detection of blood-borne bacteria, identifying nine more A. platys, two more E. canis, one more Mycoplasma haemocanis infection and more putative bacterial pathogens than the lowest performing kit.

12.
Am J Med Genet B Neuropsychiatr Genet ; 183(1): 51-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31456352

RESUMO

Many existing DNA repositories do not have robust characterizations of smoking, while for many currently ongoing studies, the advent of vaping has rendered traditional cotinine-based methods of determining smoking status unreliable. Previously, we have shown that methylation status at cg05575921 in whole blood DNA can reliably predict cigarette consumption. However, whether methylation status in saliva can be used similarly has yet to be established. Herein, we use DNA from 418 biochemically confirmed smokers or nonsmokers to compare and contrast the utility of cg05575921 in classifying and quantifying cigarette smoking. Using whole blood DNA, a model incorporating age, gender, and methylation status had a receiver operating characteristic (ROC) area under the curve (AUC) for predicting smoking status of 0.995 with a nonlinear demethylation response to smoking. Using saliva DNA, the ROC AUC for predicting smoking was 0.971 with the plot of the relationship of DNA methylation to daily cigarette consumption being very similar to that seen for whole blood DNA. The addition of information from another methylation marker designed to correct for cellular heterogeneity improved the AUC for saliva DNA to 0.981. Finally, in 31 subjects who reported quitting smoking 10 or more years previously, cg05575921 methylation was nonsignificantly different from controls. We conclude that DNA methylation status at cg05575921 in DNA from whole blood or saliva predicts smoking status and daily cigarette consumption. We suggest these epigenetic assessments for objectively ascertaining smoking status will find utility in research, clinical, and civil applications.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Metilação de DNA , Proteínas Repressoras/genética , Saliva/metabolismo , Adulto , Área Sob a Curva , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/sangue , Fumar Cigarros/sangue , DNA/sangue , DNA/genética , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/análise , Nicotina/genética , Curva ROC , Proteínas Repressoras/sangue , Proteínas Repressoras/metabolismo , Saliva/química , Fumar/genética
13.
Breast Cancer Res ; 21(1): 62, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101124

RESUMO

BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/-), and time since blood collection (< 5, 5-10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.


Assuntos
Neoplasias da Mama/genética , DNA Tumoral Circulante , Metilação de DNA , DNA de Neoplasias , Epigênese Genética , Neoplasias da Mama/sangue , Estudos de Casos e Controles , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Razão de Chances , Estudos Prospectivos , Medição de Risco , Fatores de Risco
14.
J Dairy Sci ; 102(6): 5208-5211, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981478

RESUMO

The objective of this study was to investigate the global methylation rate in blood DNA and its relationship with lactation performance. A total of 196 mid-lactation dairy cows were fed the same diet under the same management. Milk yield was recorded and blood samples were collected from the jugular vein before morning feeding. The blood global DNA methylation rates were quantified using a methylation quantification kit. Overall, the average blood global DNA methylation rate of all cows was 12.4%. When DNA methylation rates were compared between cows with high (n = 40; 37.0 to 42.0 kg/d) and low (n = 33; 24.0 to 30.0 kg/d) milk yield, DNA methylation rates in the lower-yield cows (14.1 ± 0.7%) were significantly higher than those in the higher-yield animals (11.6 ± 0.7%). Our results indicated an association of milk and protein yields with global DNA methylation rates in lactating dairy cows. However, further research is needed to determine whether this association reflects the true influence of epigenetic mechanisms on yield or whether other factors, such as different proportions of blood cell types in high- and low-yielding cows, affect apparent global DNA methylation levels.


Assuntos
Bovinos/sangue , Metilação de DNA , Leite , Animais , Indústria de Laticínios , Dieta/veterinária , Feminino , Lactação , Leite/metabolismo
15.
Epigenomics ; 11(1): 81-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30208740

RESUMO

AIM: To identify DNA methylation biomarkers in peripheral blood samples from triple-negative breast cancer (TNBC) patients. MATERIALS & METHODS: We conducted an epigenome-wide association study (EWAS): the most promising markers were identified in 233 TNBC case-control pairs (discovery set) and subsequently validated in an independent validation set (57 TNBC patients and 124 controls). RESULTS: cg06588802 (LINC00299/ID2) showed a higher methylation in TNBC patients compared with controls (discovery set: 3% increase, p-value = 0.0009; validation set: 2% increase, p-value = 0.01). Consistent results at four neighboring methylation probes and the strong negative correlation (rho = -0.93) with LINC00299 expression add plausibility to this result. CONCLUSION: Hypermethylation of LINC00299 in peripheral blood may constitute a useful circulating biomarker for TNBC.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral , Adulto Jovem
16.
J Bone Miner Res ; 33(11): 1980-1989, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29924424

RESUMO

Osteoporosis is one of the most common age-related progressive bone diseases in elderly people. Approximately one in three women and one in five men are predisposed to developing osteoporosis. In postmenopausal women, a reduction in BMD leads to an increased risk of fractures. In the current study, we delineated the DNA methylation signatures in whole blood samples of postmenopausal osteoporotic women. We obtained whole blood DNA from 22 normal women and 22 postmenopausal osteoporotic women (51 to 89 years old) from the Canadian Multicenter Osteoporosis Study (CaMos) cohort. These DNA samples were subjected to Illumina Infinium human methylation 450 K analysis. Illumina 450K raw data were analyzed by Genome Studio software. Analysis of the female participants with early and advanced osteoporosis resulted in the generation of a list of 1233 differentially methylated CpG sites when compared with age-matched normal women. T test, ANOVA, and post hoc statistical analyses were performed, and 77 significantly differentially methylated CpG sites were identified. From the 13 most significant genes, ZNF267, ABLIM2, RHOJ, CDKL5, and PDCD1 were selected for their potential role in bone biology. A weighted polygenic DNA methylation score of these genes predicted osteoporosis at an early stage with high sensitivity and specificity and correlated with measures of bone density. Pyrosequencing analysis of these genes was performed to validate the results obtained from Illumina 450 K methylation analysis. The current study provides proof of principal for the role of DNA methylation in osteoporosis. Using whole blood DNA methylation analysis, women at risk of developing osteoporosis can be identified before a diagnosis of osteoporosis is made using BMD as a screening method. Early diagnosis will help to select patients who might benefit from early therapeutic intervention. © 2018 American Society for Bone and Mineral Research.


Assuntos
DNA/sangue , Epigênese Genética , Osteoporose/sangue , Osteoporose/genética , Pós-Menopausa/sangue , Pós-Menopausa/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Análise por Conglomerados , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Genoma Humano , Humanos , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes
17.
BMC Cancer ; 18(1): 574, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776342

RESUMO

BACKGROUND: Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS: We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS: Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS: The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Metilação de DNA/imunologia , Vigilância Imunológica/genética , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Progressão da Doença , Epigênese Genética , Feminino , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T/imunologia
18.
World J Gastroenterol ; 23(28): 5086-5096, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28811705

RESUMO

Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. However, colon cancer incidence and mortality is declining over the past decade owing to adoption of effective screening programs. Nevertheless, in some parts of the world, CRC incidence and mortality remain on the rise, likely due to factors including "westernized" diet, lifestyle, and lack of health-care infrastructure and resources. Participation and adherence to different national screening programs remain obstacles limiting the achievement of screening goals. Different modalities are available ranging from stool based tests to radiology and endoscopy with varying sensitivity and specificity. However, the availability of these tests is limited to areas with high economic resources. Recently, FDA approved a blood-based test (Epi procolon®) for CRC screening. This blood based test may serve to increase the participation and adherence rates. Hence, leading to increase in colon cancer detection and prevention. This article will discuss various CRC screening tests with a particular focus on the data regarding the new approved blood test. Finally, we will propose an algorithm for a simple cost-effective CRC screening program.


Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Fidelidade a Diretrizes , Programas de Rastreamento/métodos , Sangue Oculto , Colonoscopia/economia , Neoplasias Colorretais/economia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Análise Custo-Benefício , Detecção Precoce de Câncer/economia , Detecção Precoce de Câncer/normas , Custos de Cuidados de Saúde , Humanos , Incidência , Programas de Rastreamento/economia , Programas de Rastreamento/normas , Medição de Risco
19.
Curr Eye Res ; 41(1): 88-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25611924

RESUMO

PURPOSE/AIM: To compare the plasma levels of homocysteine and asymmetrical dimethyl-l-arginine (ADMA) and the degree of whole blood DNA methylation in patients with early and neovascular age-related macular degeneration (AMD) and in controls without maculopathy of any sort. MATERIALS AND METHODS: This observational case-control pilot study included 39 early AMD patients, 27 neovascular AMD patients and 132 sex- and age-matched controls without maculopathy. Plasma homocysteine and ADMA concentrations and the degree of whole blood DNA methylation were measured. Quantitative variables were compared by Student's t-test or Mann-Whitney test. Logistic regression models were used to investigate the significance of the association between early or wet AMD and some variables. RESULTS: There were no significant differences in mean plasma homocysteine and ADMA concentrations and in the degree of whole blood DNA methylation between patients with early or neovascular AMD and their controls. Similarly, logistic regression analysis disclosed that plasma homocysteine and ADMA levels were not associated with an increased risk for early or neovascular AMD. CONCLUSIONS: We failed to demonstrate an association between early or neovascular AMD and increased plasma homocysteine and/or ADMA. Results also suggest that the degree of whole blood DNA methylation is not a marker of AMD.


Assuntos
Arginina/análogos & derivados , Metilação de DNA , DNA/sangue , Homocisteína/sangue , Degeneração Macular Exsudativa/sangue , Idoso , Idoso de 80 Anos ou mais , Arginina/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Projetos Piloto , Fatores de Risco , Degeneração Macular Exsudativa/genética
20.
Epigenetics ; 10(4): 282-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25647181

RESUMO

Higher levels of LINE1 methylation in blood DNA have been associated with increased kidney cancer risk using post-diagnostically collected samples; however, this association has never been examined using pre-diagnostic samples. We examined the association between LINE1 %5mC and renal cell carcinoma (RCC) risk using pre-diagnostic blood DNA from the United States-based, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (215 cases/436 controls), and the Alpha-tocopherol, Beta-carotene Cancer Prevention Study (ATBC) of Finnish male smokers (191 cases/575 controls). Logistic regression adjusted for age at blood draw, study center, pack-years of smoking, body mass index, hypertension, dietary alcohol intake, family history of cancer, and sex was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) using cohort and sex-specific methylation categories. In PLCO, higher, although non-significant, RCC risk was observed for participants at or above median methylation level (M2) compared to those below the median (M1) (OR: 1.37, 95% CI: 0.96-1.95). The association was stronger in males (M2 vs. M1, OR: 1.54, 95% CI: 1.00-2.39) and statistically significant among male smokers (M2 vs. M1, OR: 2.60, 95% CI: 1.46-4.63). A significant interaction for smoking was also detected (P-interaction: 0.01). No association was found among females or female smokers. Findings for male smokers were replicated in ATBC (M2 vs. M1, OR: 1.31, 95% CI: 1.07-1.60). In a pooled analysis of PLCO and ATBC male smokers (281 cases/755 controls), the OR among subjects at or above median methylation level (M2) compared to those below the median (M1) was 1.89 (95% CI: 1.34-2.67, P-value: 3 x 10(-4)); a trend was also observed by methylation quartile (P-trend: 0.002). These findings suggest that higher LINE1 methylation levels measured prior to cancer diagnosis may be a biomarker of future RCC risk among male smokers.


Assuntos
Carcinoma de Células Renais/genética , Metilação de DNA , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Leucócitos/patologia , Elementos Nucleotídeos Longos e Dispersos , Idoso , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/epidemiologia , Feminino , Finlândia , Humanos , Neoplasias Renais/epidemiologia , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA