Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.143
Filtrar
1.
Sci Rep ; 14(1): 15219, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956117

RESUMO

Blinding eye diseases are often related to changes in retinal structure, which can be detected by analysing retinal blood vessels in fundus images. However, existing techniques struggle to accurately segment these delicate vessels. Although deep learning has shown promise in medical image segmentation, its reliance on specific operations can limit its ability to capture crucial details such as the edges of the vessel. This paper introduces LMBiS-Net, a lightweight convolutional neural network designed for the segmentation of retinal vessels. LMBiS-Net achieves exceptional performance with a remarkably low number of learnable parameters (only 0.172 million). The network used multipath feature extraction blocks and incorporates bidirectional skip connections for the information flow between the encoder and decoder. In addition, we have optimised the efficiency of the model by carefully selecting the number of filters to avoid filter overlap. This optimisation significantly reduces training time and improves computational efficiency. To assess LMBiS-Net's robustness and ability to generalise to unseen data, we conducted comprehensive evaluations on four publicly available datasets: DRIVE, STARE, CHASE_DB1, and HRF The proposed LMBiS-Net achieves significant performance metrics in various datasets. It obtains sensitivity values of 83.60%, 84.37%, 86.05%, and 83.48%, specificity values of 98.83%, 98.77%, 98.96%, and 98.77%, accuracy (acc) scores of 97.08%, 97.69%, 97.75%, and 96.90%, and AUC values of 98.80%, 98.82%, 98.71%, and 88.77% on the DRIVE, STARE, CHEASE_DB, and HRF datasets, respectively. In addition, it records F1 scores of 83.43%, 84.44%, 83.54%, and 78.73% on the same datasets. Our evaluations demonstrate that LMBiS-Net achieves high segmentation accuracy (acc) while exhibiting both robustness and generalisability across various retinal image datasets. This combination of qualities makes LMBiS-Net a promising tool for various clinical applications.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
J Integr Bioinform ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996084

RESUMO

We present a method for the layout of anatomical structures and blood vessels based on information from the Foundational Model of Anatomy (FMA). Our approach integrates a novel vascular layout into the hierarchical treemap representation of anatomy as used in ApiNATOMY. Our method aims to improve the comprehension of complex anatomical and vascular data by providing readable visual representations. The effectiveness of our method is demonstrated through a prototype developed in VANTED, showing potential for application in research, education, and clinical settings.

3.
Ann Vasc Surg ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950853

RESUMO

OBJECTIVE: To investigate the role of the Omniflow II prosthesis in the prevention of VGI in patients with peripheral arterial disease and to report on short-and mid-term graft-related morbidity. MATERIAL AND METHODS: Patients were included in prospective registry between October 2019 and March 2023. The primary endpoint was to report infection related problems, operation related wound problems and short- and mid-term graft-related morbidity. Secondary endpoint was to report the bypass patency rates and limb salvage rates. RESULTS: A total of 146 Omniflow II grafts were implanted in 125 patients. Sixty-seven patients (45.9%) received a femoral interposition graft and 77 patients (52.7%) underwent ipsilateral bypass surgery (femoropopliteal/femorocrural). Forty-one patients (28.1%) underwent crural bypass surgery. Seventy-six patients (52.1%) had previous vascular operation in the groin. Mean Follow-up time was 352 days (range 0-1108 days). 3.4% of the patients suffered a wound infection limited to the dermis and in 8.2% the subcutaneous tissue was involved. Five early VGI (3.4%) and one late VGI (0.7%) occurred. One year primary patency rate of above the knee bypass was significantly better compared to the bypass below the knee (74.5% ± 0.131 versus 54% ± 0.126 (p=0.049)). This difference was not significantly different when below the knee bypass surgery was compared to crural bypass surgery (54% ± 0.126 versus 23.8% ± 0.080 (p=0.098)). CONCLUSION: The performance of the Omniflow II prosthesis in the preventive setting is highly influenced by the anatomic location of the distal anastomosis. No influence on the incidence of postoperative wound problems could be observed. The rate of Omniflow II VGI in a high risk population is similar to reported outcomes in other prosthetic grafts.

4.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001447

RESUMO

We studied 115 cases of EEC diagnosed on hysterectomy specimens. Double immunohistochemical staining (D2-40/CD31) was performed in all 115 cases to show LVI and BVI on the same slide. MELF pattern invasion was present in 24/115 (21%) cases. MELF-positive tumors had a higher frequency of LVI than MELF-negative tumors (58% and 23%, respectively); the frequency of BVI was twice as high in MELF-positive tumors in comparison to MELF-negative tumors (25% and 12%, respectively). These differences were significant (p ˂ 0.0001). All tumors with positive BVI also had a concomitant LVI. The presence of MELF invasion had no impact on overall survival, confirming previous studies. 5-year survival rates were almost equal in cases with negative LVSI and cases with positive isolated LVI (98% vs. 97%). However, in cases where BVI was also present, the 5-year survival rate was significantly lower, 63% (p ˂ 0.0001). Furthermore, BVI proved to be an independent prognostic factor for overall survival, disease-free survival, and recurrence in the multivariate analysis. In conclusion, MELF pattern invasion is a good predictor of lymphatic and blood vessel invasion but has no prognostic value. Our results suggest that BVI in EEC has greater clinical value than isolated LVI or myometrial invasion patterns, and the therapeutic approach should be guided by BVI presence. Therefore, we hope this study will promote the routine evaluation of BVI in the context of EEC diagnostic procedures.

5.
J Am Acad Dermatol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004348

RESUMO

BACKGROUND: Port-Wine Birthmarks (PWB) are congenital capillary malformations requiring multiple treatments. Optical coherence tomography (OCT), a non-invasive imaging technique, characterizes vessels in cutaneous vascular lesions including PWBs. OBJECTIVE: To assess variability in blood vessel characteristics within and between individual PWBs. METHODS: OCT was used to measure blood vessel density (%) and modal vessel diameter (micrometres) at increments of 0.05 mm from skin surface to a depth of 0.50 mm at several adjacent spots of single PWBs in this cross-sectional study. Average ratios of vessel density and diameter in affected to control skin were obtained for each PWB by averaging data for all spots within a lesion. Statistical analysis was performed with linear mixed effects model using SPSS (IBM, Corp.). RESULTS: There was great variability in vessel density and diameter within and between PWBs. Depths where average ratios of vessel density were consistently greater in affected to control skin were shallow, between 0.15 - 0.2 mm deep from the skin surface. LIMITATIONS: Small sample size and device inability to measure diameters smaller than 20 micrometres. CONCLUSION: There is variability in vessel density and diameter within and between PWBs. Individualized treatment planning guided by OCT mapping should be studied further.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39014178

RESUMO

PURPOSE: Inadequate perfusion is the most common cause of partial flap loss in tissue transfer for post-mastectomy breast reconstruction. The current state-of-the-art uses computed tomography angiography (CTA) to locate the best perforators. Unfortunately, these techniques are expensive and time-consuming and not performed during surgery. Dynamic infrared thermography (DIRT) can offer a solution for these disadvantages. METHODS: The research presented couples thermographic examination during DIEP flap breast reconstruction with automatic segmentation approach using a convolutional neural network. Traditional segmentation techniques and annotations by surgeons are used to create automatic labels for the training. RESULTS: The network used for image annotation is able to label in real-time on minimal hardware and the labels created can be used to locate and quantify perforator candidates for selection with a dice score accuracy of 0.8 after 2 min and 0.9 after 4 min. CONCLUSIONS: These results allow for a computational system that can be used in place during surgery to improve surgical success. The ability to track and measure perforators and their perfused area allows for less subjective results and helps the surgeon to select the most suitable perforator for DIEP flap breast reconstruction.

7.
Ann Anat ; 255: 152285, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830557

RESUMO

Embolization of coronary arteries and their terminal arterioles causes ischemia of all tissues distributed within a cardiac wall including the intrinsic cardiac ganglionated nerve plexus (ICGP). The disturbed blood supply to the ICGP causes chronic sympathetic activation with succeeding atrial and ventricular arrhythmias. This study analyses the anatomy of microcirculation of epicardial nerves and ganglia using the hearts of 11 domestic pigs. Our findings demonstrate that thicker epicardial nerves are normally supplied with blood via 12 epineural arterioles penetrating the endoneurium regularly along a nerve, and forming an endoneurial capillary network, which drains the blood into the myocardial blood flow. The mean diameter of intraneural capillaries was 7.2 ± 0.2 µm, while the diameters of arterioles were 25.8 ± 0.7 µm and involved 45 endothelial cells accompanied by circular smooth muscle cells. Usually, two or three arterioles with a mean diameter of 28.9 ± 1.7 µm supplied blood to any epicardial ganglion, in which arterioles proceeded into a network of capillaries with a mean diameter of 6.9 ± 0.3 µm. Both the epicardial nerves and the ganglia distributed near the porta venarum of the heart had tiny arterioles that anastomosed blood vessels from the right and the left coronary arteries. The density of blood vessels in the epicardial nerves was significantly lesser compared with the ganglia. Our electron microscopic observations provided evidence that blood vessels of the pig epicardial nerves and ganglia may be considered as either arterioles or capillaries that have quantitative and qualitative differences comparing to the corresponding blood vessels in humans and, therefore, a pig should not be considered as an animal model of the first choice for further heart functional studies seeking to improve the treatment of cardiac arrhythmias via trans-coronary cardiac neuroablation. STRUCTURED ABSTRACT: This study details the anatomy of microcirculation of epicardial nerves and ganglia, from which intracardiac nerves and bundles of nerve fibers extend into all layers of the atrial and ventricular walls in the most popular animal model of experimental cardiology and cardiac surgery - the domestic pig. Our findings provided evidence that blood vessels of the pig epicardial nerves and ganglia may be considered as either arterioles or capillaries that have quantitative and qualitative differences comparing to the corresponding blood vessels in humans and, therefore, a pig should not be considered as an animal model of the first choice for further heart functional studies seeking to improve the treatment of cardiac arrhythmias via trans-coronary cardiac neuroablation.

8.
Mol Cells ; 47(7): 100077, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825189

RESUMO

Vascular disease, including heart disease, stroke, and peripheral arterial disease, is one of the leading causes of death and disability and represents a significant global health issue. Since the development of human induced pluripotent stem cells (hiPSCs) in 2007, hiPSCs have provided unique and tremendous opportunities for studying human pathophysiology, disease modeling, and drug discovery in the field of regenerative medicine. In this review, we discuss vascular physiology and related diseases, the current methods for generating vascular cells (eg, endothelial cells, smooth muscle cells, and pericytes) from hiPSCs, and describe the opportunities and challenges to the clinical applications of vascular organoids, tissue-engineered blood vessels, and vessels-on-a-chip. We then explore how hiPSCs can be used to study and treat inherited vascular diseases and discuss the current challenges and future prospects. In the future, it will be essential to develop vascularized organoids or tissues that can simultaneously undergo shear stress and cyclic stretching. This development will not only increase their maturity and function but also enable effective and innovative disease modeling and drug discovery.

9.
Biomedicines ; 12(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927542

RESUMO

BACKGROUND: Autologous vein grafts are widely used for bypass procedures in cardiovascular surgery. However, these grafts are susceptible to failure due to vein graft disease. Our study aimed to evaluate the impact of the latest-generation FRAME external support on vein graft remodeling in a preclinical model. METHODS: We performed autologous internal jugular vein interposition grafting in porcine carotid arteries for one month. Four grafts were supported with a FRAME mesh, while seven unsupported grafts served as controls. The conduits were examined through flowmetry, angiography, macroscopy, and microscopy. RESULTS: The one-month patency rate of FRAME-supported grafts was 100% (4/4), whereas that of unsupported controls was 43% (3/7, Log-rank p = 0.071). On explant angiography, FRAME grafts exhibited significantly more areas with no or mild stenosis (9/12) compared to control grafts (3/21, p = 0.0009). Blood flow at explantation was higher in the FRAME grafts (145 ± 51 mL/min) than in the controls (46 ± 85 mL/min, p = 0.066). Area and thickness of neo-intimal hyperplasia (NIH) at proximal anastomoses were similar for the FRAME and the control groups: 5.79 ± 1.38 versus 6.94 ± 1.10 mm2, respectively (p = 0.558) and 480 ± 95 vs. 587 ± 52 µm2/µm, respectively (p = 0.401). However, in the midgraft portions, the NIH area and thickness were significantly lower in the FRAME group than in the control group: 3.73 ± 0.64 vs. 6.27 ± 0.64 mm2, respectively (p = 0.022) and 258 ± 49 vs. 518 ± 36 µm2/µm, respectively (p = 0.0002). CONCLUSIONS: In our porcine model, the external mesh FRAME improved the patency of vein-to-carotid artery grafts and protected them from stenosis, particularly in the mid regions. The midgraft neo-intimal hyperplasia was two-fold thinner in the meshed grafts than in the controls.

10.
Comput Biol Med ; 178: 108773, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925090

RESUMO

Extracting global and local feature information is still challenging due to the problems of retinal blood vessel medical images like fuzzy edge features, noise, difficulty in distinguishing between lesion regions and background information, and loss of low-level feature information, which leads to insufficient extraction of feature information. To better solve these problems and fully extract the global and local feature information of the image, we propose a novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation, which consists of an encoder and a decoder and is connected between the encoder and decoder by a transscale transformer cascade module. Among them, the encoder consists of a local-global transscale transformer module, a multi-head layered transscale adaptive embedding module, and a local context(LCNet) module. The transscale transformer cascade module learns local and global feature information from the first three layers of the encoder, and multi-scale dependent features, fuses the hierarchical feature information from the skip connection block and the channel-token interaction fusion block, respectively, and inputs it to the decoder. The decoder includes a decoding module for the local context network and a transscale position transformer module to input the local and global feature information extracted from the encoder with retained key position information into the decoding module and the position embedding transformer module for recovery and output of the prediction results that are consistent with the input feature information. In addition, we propose an improved cross-entropy loss function based on the difference between the deterministic observation samples and the prediction results with the deviation distance, which is validated on the DRIVE and STARE datasets combined with the proposed network model based on the dual transformer structure in this paper, and the segmentation accuracies are 97.26% and 97.87%, respectively. Compared with other state-of-the-art networks, the results show that the proposed network model has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.

11.
Hum Pathol ; 150: 29-35, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914168

RESUMO

Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase for collagen, stimulating epithelial-mesenchymal transition and stiffness in breast cancer. Here, we investigated levels of DDR2 in breast tumor cells in relation to vascular invasion, TIL subsets, macrophages, molecular tumor subtypes, modes of detection and prognosis. This retrospective, population-based series of invasive breast carcinomas from the Norwegian Screening Program in Vestfold County (Norway), period 2004-2009, included 200 screening patients and 82 cases detected in screening intervals. DDR2 was examined on core needle biopsies using a semi-quantitative, immunohistochemical staining index and dichotomized as low or high DDR2 expression. Counts of macrophages and TIL subsets were dichotomized based on immunohistochemistry using TMA. We also recorded blood or lymphatic vessel invasion (BVI or LVI) as present or absent by immunohistochemistry. High expression of DDR2 in tumor cells showed significant relation with high counts of CD163+ macrophages (p < 0.001) and FOXP3 TILs (p = 0.011), presence of BVI (p = 0.028), high tumor cell proliferation by Ki67 (p = 0.033), ER negativity (p = 0.001), triple-negative cases (p = 0.038), basal-like features (p < 0.001) as well as interval detection (p < 0.001). By multivariate analysis, high DDR2 expression was related to reduced recurrence-free survival (HR, 2.3, p = 0.017), when examined together with histologic grading, lymph node assessment, tumor diameter, BVI, and molecular tumor subtype. This study supports a link between high DDR2 expression, high counts of macrophages by CD163 (tumor associated) and regulatory T cells by FOXP3 together with the presence of BVI, possibly indicating increased tumor motility and intravasation in aggressive breast tumors.

12.
World Neurosurg ; 189: 201-202, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901479

RESUMO

A 54-year-old woman with no relevant medical history presented with severe headache, nausea, and vomiting for 8 days. Imaging examination revealed a subarachnoid hemorrhage in the left interpeduncular cistern without aneurysms. Computed tomography angiography and digital subtraction angiography found an anomalous vein near the site of the hemorrhagic clots, indicating abnormalities in cerebral venous drainage that provided an anastomosis between the drainage system of the deep middle cerebral, petrosal, and lateral mesencephalic veins. In the primitive pattern, the basal vein of Rosenthal drains into the lateral mesencephalic vein and to the petrosal sinus. This anomalous flow may predispose to subarachnoid hemorrhage, emphasizing the association between nonaneurysmal perimesencephalic hemorrhage and venous anomalies.

13.
Exp Cell Res ; 440(2): 114136, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909881

RESUMO

Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Músculo Liso Vascular , Miócitos de Músculo Liso , Organoides , Osteogênese , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Osteogênese/genética , Organoides/metabolismo , Organoides/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Células Cultivadas , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Técnicas de Cocultura/métodos , Diferenciação Celular , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38900399

RESUMO

PURPOSE: Varicose veins in the lower extremities are dilated subcutaneous varicose veins with a diameter of ≥ 3 mm, caused by increased venous pressure resulting from backflow of blood due to venous valve insufficiency (Gloviczki in Handbook of venous disorders: guidelines of the American venous forum, Hodder Arnold, London, 2009). When diagnosing varicose veins, the shape and thickness of the blood vessels should be accurately visualized in three dimensions. In this study, we investigated a new method for numerical evaluation of vascular morphology related to varicose veins in the lower extremities, using a photoacoustic imaging (PAI) system, which can acquire high-resolution and three-dimensional images noninvasively. METHODS: Nine patients with varicose veins participated in the study, and their images were captured using an optical camera and PAI system. We visualized the vascular structure, created a blood presence density (BPD) heat map, and examined the correlation between BPD and location of varicose veins. RESULTS: The obtained photoacoustic (PA) images demonstrated the ability of this method to visualize vessels ranging from as small as 0.2 mm in diameter to large, dilated vessels in three dimensions. Furthermore, the study revealed a correlation between the high-density part of the BPD heat map generated from the PAI images and the presence of varicose veins. CONCLUSION: PAI is a promising technique for noninvasive and accurate diagnosis of varicose veins in the lower extremities. By providing valuable information on the morphology and hemodynamics of the varicose veins, PAI may facilitate their early detection and treatment.

15.
J Zhejiang Univ Sci B ; 25(6): 499-512, 2024 Jun 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910495

RESUMO

Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.


Assuntos
Células Estreladas do Fígado , Poliésteres , Diálise Renal , Coelhos , Animais , Poliésteres/química , Proteínas Virais Reguladoras e Acessórias , Alicerces Teciduais , Transfecção , Biônica , Poliuretanos , Prótese Vascular , Matriz Extracelular/metabolismo , Humanos , Vírus da Hepatite B/genética , Colágeno , Engenharia Tecidual/métodos , Transativadores
16.
Med Biol Eng Comput ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898202

RESUMO

Medical image segmentation commonly involves diverse tissue types and structures, including tasks such as blood vessel segmentation and nerve fiber bundle segmentation. Enhancing the continuity of segmentation outcomes represents a pivotal challenge in medical image segmentation, driven by the demands of clinical applications, focusing on disease localization and quantification. In this study, a novel segmentation model is specifically designed for retinal vessel segmentation, leveraging vessel orientation information, boundary constraints, and continuity constraints to improve segmentation accuracy. To achieve this, we cascade U-Net with a long-short-term memory network (LSTM). U-Net is characterized by a small number of parameters and high segmentation efficiency, while LSTM offers a parameter-sharing capability. Additionally, we introduce an orientation information enhancement module inserted into the model's bottom layer to obtain feature maps containing orientation information through an orientation convolution operator. Furthermore, we design a new hybrid loss function that consists of connectivity loss, boundary loss, and cross-entropy loss. Experimental results demonstrate that the model achieves excellent segmentation outcomes across three widely recognized retinal vessel segmentation datasets, CHASE_DB1, DRIVE, and ARIA.

17.
Ann Biomed Eng ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796670

RESUMO

Biomimetic tumor microenvironment models bridge the gap between in vitro and in vivo systems and serve as a useful way to address the modeling challenge of how to recreate the cell and system complexity associated with real tissues. Our laboratory has developed an ex vivo rat mesentery culture model, which allows for simultaneous investigation of blood and lymphatic microvascular network remodeling in an intact tissue environment. Given that angiogenesis and lymphangiogenesis are key contributors to the progression of cancer, the objective of this study was to combine tissue and tumor spheroid culture methods to establish a novel ex vivo tumor spheroid-tissue model by verifying its use for evaluating the effects of cancer cell behavior on the local microvascular environment. H1299 or A549 tumor spheroids were formed via hanging drop culture and seeded onto rat mesenteric tissues harvested from adult male Wistar rats. Tissues with transplanted spheroids were cultured in serum-free media for 3 to 5 days. PECAM, NG2, CD11b, and αSMA labeling identified endothelial cells, pericytes, immune cells, and smooth muscle cells, respectively. Time-lapse imaging confirmed cancer cell type specific migration. In addition to increasing PECAM positive capillary sprouting and LYVE-1 positive endothelial cell extensions indicative of lymphangiogenesis, tumor spheroid presence induced the formation of lymphatic/blood vessel connections and the formation of hybrid, mosaic vessels that were characterized by discontinuous LYVE-1 labeling. The results support the application of a novel tumor spheroid microenvironment model for investigating cancer cell-microvascular interactions.

18.
Cureus ; 16(4): e59085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38803734

RESUMO

Reduced ocular perfusion likely contributes to glaucomatous damage at the optic nerve head (ONH). In recent decades, investigators have focused heavily on ocular perfusion pressure and other factors affecting blood flow to the eye. Comparatively, far less attention has been focused on the blood vessels themselves. Here, we asked whether glaucomatous individuals exhibit anatomical deficiencies (i.e., fewer blood vessels) in their ONH blood supply. To answer this question, we performed a systematic literature review to (1) determine how many studies have reported measuring blood vessels in the ONH and (2) whether these studies reported differences in blood vessel quantity. Additionally, we report a method for quantifying blood vessels in ex vivo human ONH preparations, including an ONH from an individual with glaucoma. Our results show that only two studies in the past 50 years have published data concerning blood vessel density in glaucomatous ONHs. Interestingly, both studies reported decreased blood vessel density in glaucoma. Consistent with this finding, we also report reduced blood vessel numbers in the superolateral quadrant of a glaucomatous individual's ONH. Vascularity in the three remaining quadrants was similar to control. Together, our findings raise the interesting possibility that individuals with a relatively sparse ONH blood supply are more likely to develop glaucoma. Future studies with larger sample sizes and more thorough quantification are necessary to determine the link more accurately between glaucoma and the blood supply to the ONH.

19.
Sci Rep ; 14(1): 10144, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698185

RESUMO

Arterial pulse wave velocity (PWV) is recognized as a convenient method to assess peripheral vascular stiffness. This study explored the clinical characteristics of hand PWV (hPWV) and hand pulse transit time (hPTT) in healthy adults (sixty males = 42.4 ± 13.9 yrs; sixty-four females = 42.8 ± 13.9 yrs) voluntarily participated in this study. The arterial pulse waveform and the anatomical distance from the radial styloid process to the tip of the middle finger of both hands were recorded in the sitting position. The hPWV was calculated as the traversed distance divided by hPTT between those two points. Male subjects showed significantly greater hPWV, systolic blood pressure, and pulse pressure than age-matched female subjects, while the hPTT was not significantly different between genders. Multiple linear regression analysis showed that gender is a common determinant of hPWV and hPTT, and that age and heart rate (HR) were negatively correlated with hPWV and hPTT, respectively. We conclude that male subjects have greater hPWV than female subjects. Ageing is associated with decreased hPWV, while increased HR is associated with a smaller hPTT. The hPWV and hPTT might be used as non-invasive indices to characterise the ageing and arterial stiffness of peripheral blood vessels.


Assuntos
Pressão Sanguínea , Mãos , Frequência Cardíaca , Análise de Onda de Pulso , Rigidez Vascular , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Mãos/fisiologia , Rigidez Vascular/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Voluntários Saudáveis
20.
Cureus ; 16(4): e58694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38774167

RESUMO

In this narrative review, we explore the relationship between long COVID patients and their risk of developing heart failure (HF). Patients with long COVID face a heightened risk of HF, a critical cardiovascular complication linked to the prolonged effects of COVID-19. Clinical manifestations of long COVID-associated HF present diagnostic challenges, complicating patient management. Multidisciplinary care is essential to address these complexities effectively. We found that long COVID can result in various cardiovascular issues including HF. The current view is long COVID leads to HF by activating systemic inflammation by causing endothelial dysfunction, which leads to activation of the complement pathways, tissue factor pathways, and Von Willebrand factor; activation of all these factors leads to venous and arterial thrombosis, which could lead to clogging of blood vessel of the heart leading to cardiovascular complications. The association between long COVID and HF can be challenging despite being recognized as comorbidity because biomarkers are not dependable in determining whether a patient had HF before or after contracting COVID-19. Emerging therapeutic modalities offer hope for improving outcomes, but further research is needed to refine management strategies and mitigate long-term cardiovascular consequences of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA