Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1285847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143580

RESUMO

Triticum boeoticum Boiss. (AbAb, 2n = 2x = 14) is a wheat-related species with the blue aleurone trait. In this study, 18 synthetic Triticum turgidum-Triticum boeoticum amphiploids were identified, which were derived from crosses between T. boeoticum and T. turgidum. Three probes (Oligo-pTa535, Oligo-pSc119.2, and Oligo-pTa713) for multicolor fluorescence in situ hybridization (mc-FISH) were combined with genomic in situ hybridization (GISH) to identify chromosomal composition. Seven nutritional indices (anthocyanins, protein, total essential amino acids TEAA, Fe, Zn, Mn and Cu) were measured, and the nutritional components of 18 synthetic amphiploids were comprehensively ranked by principal component analysis (PCA). The results showed that all three synthetic amphiploids used for cytological identification contained 42 chromosomes, including 14 A, 14 B, and 14 Ab chromosomes. The average anthocyanin content was 82.830 µg/g to 207.606 µg/g in the whole meal of the 17 blue-grained lines (Syn-ABAb-1 to Syn-ABAb-17), which was obviously higher than that in the yellow-grained line Syn-ABAb-18 (6.346 µg/g). The crude protein content was between 154.406 and 180.517 g/kg, and the EAA content was 40.193-63.558 mg/g. The Fe, Zn, Mn and Cu levels in the 17 blue-grained lines were 60.55 to 97.41 mg/kg, 60.55-97.41 mg/kg, 35.11 to 65.20 mg/kg and 5.74 to 7.22 mg/kg, respectively, which were higher than those in the yellow-grained line. The contribution of the first three principal components reached 84%. The first principal component was mainly anthocyanins, Fe, Zn and Mn. The second principal component contained protein and amino acids, and the third component contained only Cu. The top 5 Triticum turgidum-Triticum boeoticum amphiploids were Syn-ABAb-11, Syn-ABAb-17, Syn-ABAb-5, Syn-ABAb-8 and Syn-ABAb-4. These amphidiploids exhibited the potential to serve as candidates for hybridization with common wheat, as indicated by comprehensive score rankings, toward enhancing the nutritional quality of wheat.

2.
Plant J ; 113(1): 47-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377282

RESUMO

Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.


Assuntos
Antocianinas , Hordeum , Antocianinas/metabolismo , Estudo de Associação Genômica Ampla , Haplótipos , Hordeum/genética , Hordeum/metabolismo , Melhoramento Vegetal
3.
Front Plant Sci ; 12: 762265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804098

RESUMO

Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.

4.
J Appl Genet ; 61(2): 169-177, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32072449

RESUMO

Diploid wild einkorn wheat, Triticum boeoticum Boiss (AbAb, 2n = 2x = 14), is a wheat-related species with a blue aleurone layer. In this study, six blue-grained wheat lines were developed from F8 progeny of crosses between common wheat and T. boeoticum. The chromosome constitutions of these lines were characterized by fluorescence in situ hybridization (FISH) using the oligonucleotide probes Oligo-pTa535-1, Oligo-pSc119.2-1, Oligo-pTa71-2, and (AAC)7. Multicolor FISH using Oligo-pTa535-1, Oligo-pSc119.2-1, and Oligo-pTa71-2 identified all 42 common wheat chromosomes, while Oligo-pTa535-1 and (AAC)7 discriminated the 14 chromosomes of T. boeoticum. FISH revealed that all six blue-grained lines were wheat-T. boeoticum 4Ab (4B) disomic substitution lines. The substitution lines were validated by genotyping using the wheat 55 K single nucleotide polymorphism (SNP) array containing 53,063 markers. These 4Ab (4B) substitution lines represent novel germplasm for blue-grained wheat breeding. The FISH probes and SNP markers used here can be applied in the development of blue-grained wheat-Triticum boeoticum translocation lines.


Assuntos
Cromossomos de Plantas/genética , Grão Comestível/genética , Proteínas de Plantas/genética , Triticum/genética , Cruzamento , Cruzamentos Genéticos , Diploide , Grão Comestível/crescimento & desenvolvimento , Hibridização in Situ Fluorescente , Oligonucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/crescimento & desenvolvimento
5.
Plant J ; 101(5): 1057-1074, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31571294

RESUMO

Functional divergence after gene duplication plays a central role in plant evolution. Among cereals, only Hordeum vulgare (barley), Triticum aestivum (wheat) and Secale cereale (rye) accumulate delphinidin-derived (blue) anthocyanins in the aleurone layer of grains, whereas Oryza sativa (rice), Zea mays (maize) and Sorghum bicolor (sorghum) do not. The underlying genetic basis for this natural occurrence remains elusive. Here, we mapped the barley Blx1 locus involved in blue aleurone to an approximately 1.13 Mb genetic interval on chromosome 4HL, thus identifying a trigenic cluster named MbHF35 (containing HvMYB4H, HvMYC4H and HvF35H). Sequence and expression data supported the role of these genes in conferring blue-coloured (blue aleurone) grains. Synteny analyses across monocot species showed that MbHF35 has only evolved within distinct Triticeae lineages, as a result of dispersed gene duplication. Phylogeny analyses revealed a shared evolution pattern for MbHF35 in Triticeae, suggesting that these genes have co-evolved together. We also identified a Pooideae-specific flavonoid 3',5'-hydroxylase (F3'5'H) lineage, termed here Mo_F35H2, which has a higher amino acid similarity with eudicot F3'5'Hs, demonstrating a scenario of convergent evolution. Indeed, selection tests identified 13 amino acid residues in Mo_F35H2 that underwent positive selection, possibly driven by protein thermostablility selection. Furthermore, through the interrogation of barley germplasm there is evidence that HvMYB4H and HvMYC4H have undergone human selection. Collectively, our study favours blue aleurone as a recently evolved trait resulting from environmental adaptation. Our findings provide an evolutionary explanation for the absence of blue anthocyanins in other cereals and highlight the importance of gene functional divergence for plant diversity and environmental adaptation.


Assuntos
Hordeum/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Evolução Biológica , Mapeamento Cromossômico , Cor , Grão Comestível , Meio Ambiente , Duplicação Gênica , Loci Gênicos/genética , Hordeum/fisiologia , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo
6.
Plant Cell Rep ; 38(10): 1291-1298, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352584

RESUMO

KEY MESSAGE: RNA-Seq was employed to compare the transcriptome differences between the triticale lines and to identify the key gene responsible for the blue aleurone trait. The accumulation of anthocyanins in the aleurone of triticale results in the formation of the blue-grained trait, but the identity of the genes associated with anthocyanin biosynthesis in the aleurone has not yet been reported. In this manuscript, RNA-Seq was employed to compare the transcriptome differences between the triticale lines HM13 (blue aleurone) and HM5 (white aleurone), and to identify the key genes responsible for the blue aleurone trait. There were 32,406 differentially expressed genes between HM13 and HM5. Seventy-three unigenes were homologous to the structural genes related to anthocyanin biosynthesis, and the average transcript level of the structural genes was higher in HM13 than in HM5, so that quantitative differences between the two lines in transcription rates could be the cause of the blue aleurone. The MYB and bHLH transcription factors had two homologous unigenes, but contained only one differentially expressed unigene each. The relative transcript level of bHLH Unigene5672_All (TsMYC2) in HM13 was 42.71 times that in HM5, while the relative transcript level of the MYB transcription factor Unigene12228_All in HM13 was 2.20 times that in HM5. qPCR experiments determined the relative transcript level of TsMYC2 in developing grain, with the expression of TsMYC2 in grain being the highest compared with that in root, stem or leaf tissue. TsMYC2 was homologous to the bHLH transcription factor regulating anthocyanin biosynthesis and contained three entire functional domains: bHLH-MYC_N, HLH and ACT-like, which were important for exercising regulation of anthocyanin biosynthesis as a bHLH transcription factor. Transient expression of ZmC1 and TsMYC2 could induce anthocyanin biosynthesis in white wheat coleoptile cells, demonstrating that TsMYC2 was a functional bHLH transcription factor. These results indicated that TsMYC2 was associated with the blue aleurone trait and could prove to be a valuable gene with which to breed new triticale cultivars with the blue aleurone trait.


Assuntos
Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Triticale/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Secale/metabolismo , Fatores de Transcrição/genética , Triticale/genética , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA