Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
J Bone Metab ; 31(3): 196-208, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39307520

RESUMO

BACKGROUND: This study aimed to examine the effects of psychogenic stress (PS) frequency on oxidative stress and organ development during growth and to gain fundamental insights into developmental processes during this period. METHODS: Four-week-old male Wistar rats were randomly assigned to a control and three PS groups according to PS frequencies. PS was induced using restraint and water immersion techniques once daily for 3 hr at a time for a period of 4 weeks. RESULTS: Oxidative stress increased with increasing PS frequency. The weights of organs other than the adrenal glands significantly decreased with increasing PS frequency, indicating growth suppression. Furthermore, bone morphology, weight, and length significantly decreased with increasing PS frequency. CONCLUSIONS: High-frequency PS exposure during developmental growth significantly negatively affects oxidative stress and organ and bone development. In particular, increased oxidative stress due to excessive PS has detrimental effects on organ and bone growth.

2.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110039, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39265967

RESUMO

Abamectin (ABM) is a widely used pesticide in agriculture and veterinary medicine, which primarily acts by disrupting the neurological physiology of pests, leading to their paralysis and death. Its extensive application has resulted in contamination of many natural water bodies. While the adverse effects of ABM on the growth and development of non-target organisms are well documented, its impact on bone development remains inadequately studied. The present study aimed to investigate the effects of environmentally relevant concentrations of ABM (1, 5, 25 µg/L) on early bone development in zebrafish. Our results indicated that ABM significantly affected both cartilage and bone development of zebrafish larvae, accompanied by dose-dependent increase in deformity and mortality rates, as well as exacerbated apoptosis. ABM exposure led to deformities in the ceratobranchial (cb) and hyosymplectic (hs), accompanied by significant increases in the length of the palatoquadrate (pq). Furthermore, significant decreases in the CH-CH angle, Meckel's-Meckel's angle, and Meckel's-PQ angle were noted. Even at the safe concentration of 5 µg/L (1/10 of the 96 h LC50), ABM delayed the process of bone mineralization in zebrafish larvae. Real-time fluorescent quantitative PCR results demonstrated that ABM induced differential gene expression associated with cartilage and bone development in zebrafish. Thus, this study provides preliminary insights into the effects and molecular mechanisms underlying ABM's impact on the bone development of zebrafish larvae and offers new evidence for a better understanding of its toxicity.

3.
Genes (Basel) ; 15(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39336725

RESUMO

ZC4H2 encodes a C4H2-type zinc finger protein, mutations of which lead to a spectrum of diseases known as ZC4H2 associated rare disorders (ZARD). In addition to neurological phenotypes, the most typical symptoms of ZARD are multiple joint contractures of varying degrees, accompanied by abnormal development of muscles and bones, and osteoporosis in some cases. The pathogenic mechanisms of such bone related phenotypes, however, remain unclear. Here, we showed that ZC4H2 is expressed in the developing bones in mice. ZC4H2 knockout mice were neonatal-lethal and smaller in size, with reduced calcification of long bones. Upon induced loss of ZC4H2 postnatally, the femoral bones developed an osteoporosis-like phenotype, with reduced bone mineral density, bone-volume fraction, and trabecular bone number. Knockdown of ZC4H2 showed no clear effect on the expression of osteogenic differentiation genes in in vitro models using mesenchymal stem cells. Interestingly, ZC4H2 knockdown significantly enhanced osteoclast differentiation and bone resorption in induced bone marrow-derived macrophages. We further confirmed that the number of osteoclasts in the long bone of ZC4H2 knockout mice was increased, as well as the expression of the serum bone resorption/osteoporosis marker CTX-1. Our study unveils a new role of ZC4H2 in osteoclast differentiation and bone development, providing new clues on the pathology of ZARD.


Assuntos
Artrogripose , Camundongos Knockout , Osteoclastos , Osteogênese , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Artrogripose/genética , Artrogripose/patologia , Diferenciação Celular/genética , Osteoporose/genética , Osteoporose/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Células-Tronco Mesenquimais/metabolismo , Densidade Óssea/genética
4.
J Clin Invest ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255038

RESUMO

Translation of mRNA to protein is tightly regulated by tRNAs, which are subject to various chemical modifications that maintain the structure, stability and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite of incompetent proliferation and osteogenic commitment. Further exploration revealed that impaired Rho GTPase signaling upregulated branched-chain amino acid transaminase 1 (BCAT1) level that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation either by targeting ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulating cellular metabolism, and indicates that suspension of translation initiation as quality control mechanism in response to tRNA dysregulation.

5.
JCI Insight ; 9(18)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088272

RESUMO

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.


Assuntos
Osso Cortical , Proteínas de Ligação a DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteogênese , Fosforilação Oxidativa , Animais , Camundongos , Osso Cortical/metabolismo , Osso Cortical/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Osteoblastos/metabolismo , Glicólise , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Knockout , Periósteo/metabolismo , Periósteo/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Metabolismo Energético , Masculino , Diferenciação Celular , Feminino , Mitocôndrias/metabolismo , Proteínas de Grupo de Alta Mobilidade
6.
J Neurol Sci ; 465: 123190, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182423

RESUMO

Congenital Zika syndrome (CZS) comprises a set of clinical manifestations that can be presented by neonates born to mothers infected by the Zika virus (ZIKV). CZS-associated phenotypes include neurological, skeletal, and systemic alterations and long-term developmental sequelae. One of the most frequently reported clinical conditions is microcephaly characterized by a reduction in head circumference and cognitive complications. Nevertheless, the associations among the diverse signaling pathways underlying CZS phenotypes remain to be elucidated. To shed light on CZS, we have extensively reviewed the morphological anomalies resulting from ZIKV infection, as well as genes and proteins of interest obtained from the published literature. With this list of genes or proteins, we performed computational analyses to explore the cellular processes, molecular mechanisms, and molecular pathways related to ZIKV infection. Therefore, in this review, we comprehensively describe the morphological abnormalities caused by congenital ZIKV infection and, through the analysis noted above, propose common molecular pathways altered by ZIKV that could explain both central nervous system and craniofacial skeletal alterations.


Assuntos
Microcefalia , Infecção por Zika virus , Humanos , Infecção por Zika virus/complicações , Infecção por Zika virus/congênito , Feminino , Complicações Infecciosas na Gravidez , Gravidez , Zika virus/genética , Zika virus/patogenicidade , Recém-Nascido , Transdução de Sinais/genética
7.
FASEB J ; 38(17): e70031, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39206513

RESUMO

The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/ß-catenin, BMP, TGF-ß, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.


Assuntos
Desenvolvimento Ósseo , Cartilagem , Homeostase , Transdução de Sinais , Humanos , Animais , Cartilagem/metabolismo , Homeostase/fisiologia , Desenvolvimento Ósseo/fisiologia , Somatomedinas/metabolismo , Osso e Ossos/metabolismo
8.
Sci Rep ; 14(1): 16474, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014195

RESUMO

Males and females have long shown disparities in body weight and height; yet, the underlying mechanisms influencing growth and development remain unclear. Male and female Zhedong White Geese (ZDW) geese have long been selected for large body size and egg production, respectively. This led to a large difference in body weight between males and females, making them a unique model for studying the effects of sex on growth and development. This study aimed to elucidate these mechanisms by comparing the transcriptomes of muscle and pituitary tissues in male and female ZDW geese to identify the critical genes responsible for the effects of sex on growth performance. Our analysis revealed 1101 differentially expressed genes (DEGs) in leg musculature (507 upregulated, 594 downregulated), 773 DEGs in breast musculature (311 upregulated, 462 downregulated), and 517 DEGs in the pituitary gland (281 upregulated, 236 downregulated) between male and female geese. These DEGs were significantly enriched in gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with endocrine metabolism (e.g., hormonal activities), muscle formation (e.g., sarcomere and myofibril), and bone formation (e.g., bone morphogenesis and cartilage formation). The upregulated genes in males were enriched in KEGG pathways involving nutrient digestion and absorption (vitamin and protein), as well as the secretion of digestive juices (gastric acid and bile). Through protein-protein interaction analyses, we also observed high-density gene networks related to muscle fiber development, calcium ion metabolism, mitochondrial respiratory chain, and bone development. Therefore, our multi-tissue transcriptome analysis provides a deeper understanding of the complex and systematic gender-driven effects on growth and development in geese. IGF1, GHRHR, and NCAPG-LCORL and pathways related to myogenesis might play vital roles in gender differences before hormones exert their effect.


Assuntos
Gansos , Desenvolvimento Muscular , Transcriptoma , Animais , Feminino , Masculino , Gansos/genética , Gansos/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Ontologia Genética
9.
Poult Sci ; 103(8): 103966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959642

RESUMO

Leg disorders have become increasingly common in broilers, leading to lower meat quality and major economic losses. This study evaluated the effects of dietary supplementation with Clostridium butyricum (C. butyricum) and 25-hydroxyvitamin D3 (25-OH-D3) on bone development by comparing growth performance, tibial parameters, Ca and P contents of tibial ash, bone development-related indicators' level, and cecal short-chain fatty acids in Cobb broilers. All birds were divided into four treatment groups, which birds fed either a basal diet (Con), basal diet + 75 mg chlortetracycline/kg (Anti), basal diet + C. butyricum at 109 CFU/kg (Cb), basal diet + C. butyricum at 109 CFU/kg and 25-OH-D3 at 25 µg/kg (CbD), or basal diet + 25-OH-D3 at 25 µg/kg (CD). Our results suggest that the dietary supplementation in Cb, CbD, and CD significantly increased the body weight (BW) and average daily gain (ADG), and reduced the feed-to-weight ratio (F/G) at different stages of growth (P < 0.05). Dietary supplementation in Cb, CbD, and CD prolonged (P < 0.05) the behavioral responses latency-to-lie (LTL) time, reduced (P < 0.05) the levels of osteocalcin (BGP) and peptide tyrosine (PYY), and increased (P < 0.05) serotonin (5-HT) and dopamine (DA). Treatment with Cb increased (P < 0.05) the levels of acetic acid, isobutyric acid, butyric acid, and isovaleric acid compared with those in Con group. The cecal metagenome showed that Alistipes spp. were significantly more abundant in Cb, CbD, and CD groups (P < 0.05). A total of 12 metabolic pathways were significantly affected by supplementation, including the signaling pathways of glucagon, insulin, and PI3K-AKT; primary and secondary bile acid biosynthesis; and P-type Ca 2+ transporters (P < 0.05). Hence, the CbD supplementation modulates bone metabolism by regulating the mediators of gut-brain axis, which may inform strategies to prevent leg diseases and improve meat quality in broilers.


Assuntos
Ração Animal , Calcifediol , Galinhas , Clostridium butyricum , Dieta , Suplementos Nutricionais , Animais , Galinhas/fisiologia , Clostridium butyricum/fisiologia , Ração Animal/análise , Dieta/veterinária , Calcifediol/administração & dosagem , Calcifediol/farmacologia , Suplementos Nutricionais/análise , Eixo Encéfalo-Intestino/fisiologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Osso e Ossos/efeitos dos fármacos , Distribuição Aleatória , Microbioma Gastrointestinal/efeitos dos fármacos
10.
FASEB J ; 38(13): e23779, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967255

RESUMO

Epigenetic modifications affect cell differentiation via transcriptional regulation. G9a/EHMT2 is an important epigenetic modifier that catalyzes the methylation of histone 3 lysine 9 (H3K9) and interacts with various nuclear proteins. In this study, we investigated the role of G9a in osteoclast differentiation. When we deleted G9a by infection of Cre-expressing adenovirus into bone marrow macrophages (BMMs) from G9afl/fl (Ehmt2fl/fl) and induced osteoclastic differentiation by the addition of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), the number of TRAP-positive multinucleated osteoclasts significantly increased compared with control. Furthermore, the mRNA expression of osteoclast markers, TRAP, and cathepsin K, and to a lesser extent, NFATc1, a critical transcription factor, increased in G9a KO cells. Infection of wild-type (WT) G9a-expressing adenovirus in G9a KO cells restored the number of TRAP-positive multinucleated cells. In G9a KO cells, increased nuclear accumulation of NFATc1 protein and decreased H3K9me2 accumulation were observed. Furthermore, ChIP experiments revealed that NFATc1 binding to its target, Ctsk promoter, was enhanced by G9a deletion. For in vivo experiments, we created G9a conditional knock-out (cKO) mice by crossing G9afl/fl mice with Rank Cre/+ (Tnfrsf11aCre/+) mice, in which G9a is deleted in osteoclast lineage cells. The trabecular bone volume was significantly reduced in female G9a cKO mice. The serum concentration of the C-terminal telopeptide of type I collagen (CTX), a bone-resorbing indicator, was higher in G9a cKO mice. In addition, osteoclasts differentiated from G9a cKO BMMs exhibited greater bone-resorbing activity. Our findings suggest that G9a plays a repressive role in osteoclastogenesis by modulating NFATc1 function.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Histona-Lisina N-Metiltransferase , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Animais , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Camundongos , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Osteogênese/fisiologia , Camundongos Knockout , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas
11.
J Clin Invest ; 134(15)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885336

RESUMO

Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Osteoblastos , Osteogênese Imperfeita , Fatores de Transcrição SOX9 , Animais , Feminino , Masculino , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular
12.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828726

RESUMO

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Síndrome de Down , Células Endoteliais , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Marcadores Genéticos , Fenótipo , Via de Sinalização Wnt
13.
Elife ; 132024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836552

RESUMO

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Assuntos
Camundongos Knockout , Proteínas Nucleares , Osteoclastos , Osteogênese , Animais , Camundongos , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo
14.
Sci Rep ; 14(1): 13522, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866900

RESUMO

The aim of the present study was to examine the growth dynamics of the two ossification centers of the body of sphenoid bone in the human fetus, based on their linear, planar and volumetric parameters. The examinations were carried out on 37 human fetuses of both sexes aged 18-30 weeks of gestation, which had been preserved in 10% neutral formalin solution. Using CT, digital image analysis software, 3D reconstruction and statistical methods, we evaluated the size of the presphenoid and postsphenoid ossification centers. The presphenoid ossification center grew proportionately in sagittal diameter, projection surface area and volume, and logarithmically in transverse diameter. The postsphenoid ossification center increased logarithmically in sagittal diameter, transverse diameter and projection surface area, while its volumetric growth followed proportionately. The numerical findings of the presphenoid and postsphenoid ossification centers may be considered age-specific reference values of potential relevance in monitoring the normal fetal growth and screening for congenital disorders in the fetus. The obtained results may contribute to a better understanding of the growing fetal skeleton, bringing new numerical information regarding its diagnosis and development.


Assuntos
Feto , Osteogênese , Osso Esfenoide , Humanos , Osso Esfenoide/diagnóstico por imagem , Osso Esfenoide/embriologia , Osso Esfenoide/crescimento & desenvolvimento , Feminino , Osteogênese/fisiologia , Masculino , Feto/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Desenvolvimento Fetal/fisiologia , Imageamento Tridimensional , Idade Gestacional
15.
FASEB J ; 38(13): e23758, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923594

RESUMO

Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.


Assuntos
Osso e Ossos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Doenças Ósseas/fisiopatologia , Doenças Ósseas/metabolismo , Relógios Circadianos/fisiologia
16.
Rev. ADM ; 81(3): 138-146, mayo-jun. 2024. tab
Artigo em Espanhol | LILACS | ID: biblio-1566385

RESUMO

Introducción: el desarrollo esquelético y dental es una condición determinante como factor principal de mala oclusión e influye en la evaluación, diagnóstico y planificación de los tratamientos de ortodoncia. Objetivo: estimar la correlación entre la edad cronológica y dental con los estadios de maduración vertebral. Material y métodos: la edad cronológica y dental se estimó por los métodos de Baccetti y el de Demirjian, con la lectura de 400 radiografías panorámicas y laterales de cráneo de 205 mujeres y 195 varones, con edades entre 4 y 17 años. La significancia estadística se estableció con el valor p < 0.05 del coeficiente de correlación de Pearson utilizando el programa SPSS v.24. Resultados: se observó un mayor porcentaje entre el estadio D de Demirjian con el estadio I de madurez de las vértebras cervicales (CVM) de Baccetti, seguido del estadio de calcificación dentaria E con el estadio CVM II. Además, existió una correlación moderada entre el método de Baccetti y el método de Demirjian en la pieza 37 (R2 = 0.3741) para la apreciación de la edad cronológica de un individuo. Conclusión: existe una buena correlación entre la edad cronológica y dental con los estadios de la maduración vertebral cervical, sin existir diferencias significativas por el sexo del individuo (AU)


Introduction: skeletal and dental development is a determining condition as the main factor of malocclusion and influences the evaluation, diagnosis, and planning of orthodontic treatments. Objective: to estimate the correlation between chronological and dental age with vertebral maturation stages. Material and methods: chronological and dental age was estimated by the Baccetti and Demirjian methods, with the reading of 400 panoramic and lateral skull radiographs of 205 women, and 195 men, aged between 4 and 17 years. Statistical significance was established with the value p < 0.05 of the Pearson correlation coefficient using the SPSS v.24 program. Results: a higher percentage was observed between Demirjian stage D with Baccetti cervical vertebral maturation (MVC) stage I, followed by dental calcification stage E with MVC stage II. In addition, there was a moderate correlation between the Baccetti method and the Demirjian method in piece 37 (R2 = 0.3741) for the assessment of the CD of an individual. Conclusion: there is a good correlation between chronological and dental age with the stages of cervical vertebral maturation, without significant differences due to the sex of the individual (AU)


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Determinação da Idade pelos Dentes/métodos , Interpretação Estatística de Dados , Maturidade Cervical/fisiologia , Distribuição por Idade e Sexo
17.
Int J Paediatr Dent ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711227

RESUMO

BACKGROUND: Changes in bone age and tooth development are late side effects of cancer therapy and can be identified by imaging examination. AIM: To evaluate the late effects of antineoplastic treatment on bone age and dental development in childhood cancer survivors. DESIGN: This is a retrospective case-control study on paediatric cancer survivors of both sexes who underwent antineoplastic treatment with 5-15 years of survival. Carpal radiographs were assessed for bone age and growth curve, and panoramic radiographs were used to evaluate dental development and alterations. Carpal radiographs were analyzed using the Greulich and Pyle inspection method, and the Martins and Sakima method was used to analyze the growth curve. All tests were applied with a confidence level of 95%. RESULTS: The study and control groups comprised 28 and 56 patients, respectively. There was no significant difference in bone age and growth curve between the study and control groups. Nonetheless, when sex was compared to chronological and bone ages, there was a significant difference in bone age (p = 0.019) and an underestimation in both groups and sexes in the Greulich and Pyle method. As to late dental effects, dental agenesia, microdontia, gyroversion, and unerupted teeth were found. Dental shape alterations mainly involve the root region. CONCLUSION: Close multidisciplinary collaboration is necessary during the follow-up period of young patients who have survived cancer.

18.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791243

RESUMO

Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.


Assuntos
Regeneração Óssea , Exossomos , Neovascularização Fisiológica , Humanos , Exossomos/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/irrigação sanguínea , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Células Endoteliais/metabolismo , Angiogênese
19.
Cell Signal ; 120: 111222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729327

RESUMO

BACKGROUND: Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS: A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS: The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-ß/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS: Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.


Assuntos
Diferenciação Celular , Instabilidade Cromossômica , Botões de Extremidades , Células-Tronco Mesenquimais , Animais , Camundongos , Desenvolvimento Ósseo , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Botões de Extremidades/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Knockout , Osteogênese/genética , Transdução de Sinais
20.
Life Sci ; 350: 122759, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815897

RESUMO

AIMS: Amoxicillin is a broad-spectrum beta-lactam antibiotic used to treat infectious diseases in pregnant women. Studies have shown that prenatal amoxicillin exposure (PAmE) has developmental toxicity on fetal development. However, the effect of PAmE on long bone development has not been reported. This study aimed to investigate the "toxic window" of PAmE on long bone development and explore its possible mechanism in fetal mice. MATERIALS AND METHODS: Pregnant mice were administered amoxicillin by gavage at different stages (gestational day (GD)10-12 and GD16-18), different doses (150 and 300 mg/kg·d) and different courses (single and multiple courses). Fetal femurs were collected at GD18 and bone development related indicators were detected. KEY FINDINGS: The results showed that PAmE significantly reduced the length of the femur and primary ossification center of fetal mice, and inhibited the development of fetal growth plate. Meanwhile, PAmE inhibited the development of bone marrow mesenchymal stem cells, osteoclasts and endothelial cells in fetal long bone. Further, we found the fetal long bone developmental toxicity induced by PAmE was most significant at late-pregnancy (GD16-18), high dose (300 mg/kg·d) and multiple-course group. Besides, PAmE inhibited the expression of Wnt/ß-catenin signaling pathway in fetal long bone. The ß-catenin mRNA expression was significantly positively correlated with the development indexes of fetal long bone. SIGNIFICANCE: PAmE has toxic effects on long bone development, and there was an obvious "toxic window" of PAmE on the long bone development in fetal mice. The Wnt/ß-catenin signaling pathway may mediate PAmE-induced fetal long bone development inhibition.


Assuntos
Amoxicilina , Antibacterianos , Desenvolvimento Ósseo , Via de Sinalização Wnt , Animais , Feminino , Gravidez , Camundongos , Amoxicilina/toxicidade , Desenvolvimento Ósseo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Antibacterianos/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Fêmur/embriologia , Osteogênese/efeitos dos fármacos , beta Catenina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Masculino , Feto/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA