Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202414867, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377463

RESUMO

The recent discovery of frustrated Lewis pairs (FLPs) during the activation of small molecules has inspired extensive research across the full span of chemical science. Owing to the nature of weak interactions, it is experimentally challenging to directly observe and modulate FLP at the molecular scale. Here we design a boron cluster anion building block (B10H82-) and organic amine cations ([NR4]+, R= -CH3, -C2H5) as the FLP to prove the feasibility of controlling their interaction in the electric double layer (EDL) via an electrochemical strategy. In situ single-molecule electrical measurements and Raman monitoring of B10H82--[NR4]+ FLP formed at the positively charged Au(111) electrode surface, in contrast to the free-standing B10H82- near or below the potential of zero charge (PZC). Furthermore, this FLP chemistry leads to a shift in the local density of states of boron clusters towards the EF for enhancing electron transport, providing a new prototype of a reversible single-cluster switch that digitally switches upon controlling FLP chemistry in the electric double layer.

2.
Angew Chem Int Ed Engl ; : e202410430, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373974

RESUMO

Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98% 10B and 95% 11B, respectively, and observed distinct photophysical behaviors. Compared to the 10B-enriched luminogens, the 11B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a 10B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.

3.
Chemphyschem ; 25(19): e202400488, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005001

RESUMO

In a recent paper (ChemPhysChem, 2023, 24, e202200947), based on the results computed using DFT method, the perfect core-shell octahedral configuration Be@B38 and Zn@B38 was reported to be the global minima of the MB38(M=Be and Zn) clusters. However, this paper presents the lower energy structures of MB38(M=Be and Zn) clusters as a quasi-planar configuration, the Be atom is found to reside on the convex surface of the quasi-planar B38 isomer, while the Zn atom tends to be attached to the top three B atoms of the quasi-planar B38 isomer. Our results show that quasi-planar MB38(M=Be and Zn) at DFT method have lower energy than core-shell octahedral configuration M@B38(M=Be and Zn). Natural atomic charges, valence electron density, electron localization function (ELF) analyses identify the MB38(M=Be and Zn) to be charge transfer complexes (Be2+B38 2-and Zn1+B38 1-) and suggest primarily the electrostatic interactions between doped atom and B38 fragment. The photoelectron spectra of the corresponding anionic structures were simulated, providing theoretical basis for future structural identification.

4.
Chemistry ; 30(51): e202402132, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38973769

RESUMO

The design of boron-based molecular rotors stems from boron-carbon binary clusters containing multiple planar hypercoordinate carbons (phCs, such as C2B8). However, the design of boron-coordinated phCs is challenging due to boron's tendency to occupy hypercoordinate centers more than carbon. Although this challenge has been addressed, the designed clusters of interest have not exhibited dynamic fluxionality similar to that of the initial C2B8. To address this issue, we report a σ/π doubly aromatic CB2H5 + cluster, the first global minimum containing a boron-coordinated planar tetracoordinate carbon atom with dynamic fluxionality. Dynamics simulations show that two ligand H atoms exhibit alternate rotation, resulting in an intriguing dynamic fluxionality in this cluster. Electronic structure analysis reveals the flexible bonding positions of the ligand H atoms because they do not participate in π delocalized bonding nor bond to any other non-carbon atom, highlighting this rotational fluxionality. Unprecedentedly, the fluxional process involves not only the usual conversion of the number of bonding atoms, but also the type of bonding (3c π bonds ↔4c σ bonds), which is an uncommon fluxional mechanism. The cluster represents an effort to apply phC species to molecular machines.

5.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739859

RESUMO

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Assuntos
Antibacterianos , Terapia Fototérmica , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Água/química , Camundongos , Radicais Livres/química , Boro/química , Boro/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
6.
J Mol Model ; 30(5): 123, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573432

RESUMO

CONTEXT: To gain a deeper understanding of zinc-doped boron clusters, theoretical calculations were performed to investigate the size effects and electronic properties of zinc-doped boron clusters. The study of the electronic properties, spectral characteristics, and geometric structures of Zn B n (n = 1-15) is of great significance in the fields of semiconductor materials science, material detection, and improving catalytic efficiency. The results indicate that Zn B n (n = 1-15) clusters predominantly exhibit planar or quasi-planar structures, with the Zn atom positioned in the outer regions of the B n framework. The second stable structure of Zn B 3 is a three-dimensional configuration, indicating that the structures of zinc-doped boron clusters begin to convert from the planar or quasi-planar structures to the 3D configurations. The second low-energy structure of Zn B 15 is a novel configuration. Relative stability analyses show that the Zn B 12 has better chemical stability than other clusters with a HOMO-LUMO gap of 2.79 eV. Electric charge analysis shows that part electrons on zinc atoms are transferred to boron atoms, and electrons prefer to cluster near the B n framework. According to the electron localization function, it gets harder to localize electrons as the equivalent face value drops, and it's challenging to see covalent bond formation between zinc and boron atoms. The spectrograms of Zn B n (n = 1-15) exhibit distinct properties and notable spectral features, which can be used as a theoretical basis for the identification and confirmation of boron clusters doped with single-atom transition metals. METHODS: The calculations were performed using the ABCluster global search technique combined with density functional theory (DFT) methods. The selected low-energy structures were subjected to geometric optimization and frequency calculations at the PBE0/6-311 + G(d) level to ensure structural stability and eliminate any imaginary frequencies. To acquire more precise relative energies, we performed single-point energies calculations for the low-lying isomers of Zn B n (n = 1-15) at the CCSD(T)/6-311 + G(d)//PBE0/6-311 + G(d) level of theory. All calculations were performed using Gaussian 09 software. To facilitate analysis, we utilized software tools such as Multiwfn, and VMD.

7.
Curr Pharm Des ; 30(12): 912-920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482627

RESUMO

The discussion has revolved around the derivatives of amino acids and peptides containing carbocycles and their potential antiviral activity in vitro against influenza A, hepatitis C viruses, and coronavirus. Studies conducted on cell cultures reveal that aminoadamantane amino acid derivatives exhibit the capacity to hinder the replication of viruses containing viroporins. Furthermore, certain compounds demonstrate potent virucidal activity with respect to influenza A/H5N1 and hepatitis C virus particles. A conceptual framework for viroporin inhibitors has been introduced, incorporating carbocyclic motifs as membranotropic carriers in the structure, alongside a functional segment comprised of amino acids and peptides. These components correspond to the interaction with the inner surface of the channel's pore or another target protein.


Assuntos
Aminoácidos , Antivirais , Peptídeos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Hepacivirus/efeitos dos fármacos , Proteínas Viroporinas/antagonistas & inibidores , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/química , Vírus da Influenza A/efeitos dos fármacos
8.
Chemistry ; 30(14): e202303531, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214885

RESUMO

A versatile method for the automated synthesis of composites containing DNA-oligonucleotides and boron cluster scaffolds and their assembly into functional nanoparticles is described. The obtained, torus-like nanoparticles carry antisense oligonucleotides that target two different oncogenes simultaneously. The nanoparticles exhibited notable silencing efficiency in vitro in a pancreatic carcinoma cell line PANC-1 toward EGFR and c-Myc genes at the mRNA level, and a significant efficiency at the protein level. The proposed approach may be an attractive alternative to methods currently used, including one therapeutic nucleic acid, one genetic target, or the use of cocktails of therapeutic nucleic acids.


Assuntos
Genes myc , Nanopartículas , Boro , DNA , Anticorpos , RNA Mensageiro
9.
Small ; 20(4): e2307029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712137

RESUMO

Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.


Assuntos
Melanoma , Neoplasias , Humanos , Melanoma/tratamento farmacológico , Boro , Corantes Fluorescentes , Hidrogênio , Peróxido de Hidrogênio , Metais , Linhagem Celular Tumoral
10.
J Colloid Interface Sci ; 658: 276-285, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104410

RESUMO

Chemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e., iron-based borides (FeB), using the superchaotropic effect of a boron cluster (closo-[B12H12]2-) and organic ligands, followed by high-temperature calcination. Experimental data and theoretical calculations revealed that FeB nanoparticles exhibit a Fenton-like effect, efficiently decomposing hydrogen peroxide into •OH and thus increasing the concentration of ROS. FeB nanomaterials demonstrate excellent catalytic performance, efficiently generate ROS, and exert significant antitumor effects in cell experiments and animal models. Therefore, FeB nanomaterials have considerable potential for application in tumor treatment and offer new insights for the development of novel and efficient cancer therapy strategies.


Assuntos
Nanopartículas , Neoplasias , Animais , Espécies Reativas de Oxigênio , Catálise , Peróxido de Hidrogênio , Ferro , Neoplasias/tratamento farmacológico , Carbono , Linhagem Celular Tumoral
11.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138563

RESUMO

In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2- and [2-B10H9O(CH2)5N3]2- of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2'-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated.

12.
ACS Appl Mater Interfaces ; 15(48): 55486-55494, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37995715

RESUMO

Malachite green (MG), a toxic antibacterial agent, is widely used in the farming industry. Effectively regulating the biotoxicity of this highly water-soluble cationic dye is challenging. Here, we present a novel strategy to reduce the biotoxicity of MG through the self-assembly of MG and the closo-dodecaborate cluster ([B12H12]2-) driven by the chaotropic effect. [B12H12]2- and MG in an aqueous solution can rapidly form an insoluble cubic-type supramolecular complex (B12-MG), and the original toxicity of MG is completely suppressed. Surprisingly, this supramolecular complex, B12-MG, has a strong UV-vis absorption peak at 600-800 nm and significant photothermal conversion efficiency under 660 nm laser irradiation. On this basis, B12-MG, the supramolecular complex, can be used as an efficient photothermal agent for antimicrobial photothermal therapy (PTT) both in vitro and in vivo. As a molecular chaperone of MG, [B12H12]2- not only can be applied as an antidote to regulate the biotoxicity of MG but also provides a novel method for the construction of photothermal agents for PTT based on the chaotropic effect.


Assuntos
Boro , Terapia Fototérmica , Boro/farmacologia , Fototerapia/métodos
13.
Chemistry; 29(63): e202302073, 2023
em Inglês | MEDLINE | ID: mdl-937589488

RESUMO

Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.


Assuntos
Nanodiamantes , Terapia por Captura de Nêutron de Boro , Neoplasias , Camundongos , Animais , Boro , Glicerol , Compostos de Boro
14.
Chemistry ; 29(63): e202302073, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37589488

RESUMO

Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanodiamantes , Neoplasias , Camundongos , Animais , Boro , Glicerol , Compostos de Boro
15.
ChemSusChem ; 16(17): e202300434, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253197

RESUMO

Engineering design of metal organic frameworks (MOFs) for gas separation applications is nowadays a thriving field of investigation. Based on the recent experimental studies of dodecaborate-hybrid MOFs as potential materials to separate industry-relevant gas mixtures, we herein present a systematic theoretical study on the derivatives of the closo-dodecaborate anion [B12 H12 ]2- , which can serve as building blocks for MOFs. We discover that amino functionalization can impart a greater ability to selectively capture carbon dioxide from its mixtures with other gases such as nitrogen, ethylene and acetylene. The main advantage lies in the polarization effect induced by amino group, which favors the localization of the negative charges on the boron-cluster anion and offers a nucleophilic anchoring site to accommodate the carbon atom in carbon dioxide. This work suggests an appealing strategy of polar functionalization to optimize the molecule discrimination ability via preferential adsorption.

16.
Yakugaku Zasshi ; 143(5): 421-428, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37121757

RESUMO

In the past, drug discovery using low-molecular-weight compounds was dominated by structural design based on combinations of non-metallic elements such as carbon, nitrogen, oxygen, and halogens. Recent drug discovery efforts have shown extraordinary progress, an example of which is the adoption of non-universal elements. The approval of boron neutron capture therapy (BNCT) using a neutron accelerator in Japan ahead of other countries is still fresh in our memory. Other small-molecule drugs containing boron atoms have also been developed, and boron is becoming widely recognized as a constituent element for drug discovery. It is known that borane (BH3) is unstable because of its electron-deficient bonds; nevertheless, its stability has been improved by the formation of clusters through multimerization. Carborane (C2B10H12), one of the borane clusters, has an icosahedral structure with two carbon atoms and ten boron atoms and exhibits properties that vastly differ from conventional boron compounds. In this symposium review, we will introduce the basic chemistry of carboranes and their application to drug discovery. Boron is an essential element in plant cell wall formation and has extremely low toxicity to humans. I hope that this symposium review will be an opportunity for us to free ourselves from existing prejudices and constraints in drug discovery, and that new modalities that skillfully utilize the characteristics of boron and boron clusters will be developed one after another.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Humanos , Boro/uso terapêutico , Descoberta de Drogas , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Química Inorgânica , Carbono
17.
Vopr Virusol ; 68(1): 18-25, 2023 03 11.
Artigo em Russo | MEDLINE | ID: mdl-36961232

RESUMO

INTRODUCTION: Currently, low molecular-weight compounds are being developed as potential inhibitors of CoVs replication, targeting various stages of the replication cycle, such as major protease inhibitors and nucleoside analogs. Viroporins can be alternative protein targets. The aim of this study is to identify antiviral properties of histidine derivatives with cage substituents in relation to pandemic strain SARS-CoV-2 in vitro. MATERIALS AND METHODS: Combination of histidine with aminoadamantane and boron cluster anion [B10H10]2 (compounds IIV) was carried out by classical peptide synthesis. Compound were identified by modern physicochemical methods. Antiviral properties were studied in vitro on a monolayer of Vero E6 cells infected with SARS-CoV-2 (alpha strain) with simultaneous administration of compounds and virus. RESULTS: Derivatives of amino acid histidine with carbocycles and boron cluster were synthesized and their antiviral activity against SARS-CoV-2 was studied in vitro. Histidine derivatives with carbocycles and [B10H10]2 have the ability to suppress virus replication. The solubility of substances in aqueous media can be increased due to formation of hydrochloride or sodium salt. DISCUSSION: 2HCl*H-His-Rim (I) showed some effect of suppressing replication of SARS-CoV-2 at a viral load of 100 doses and concentration 31.2 g/ml. This is explained by the weakly basic properties of compound I. CONCLUSION: The presented synthetic compounds showed moderate antiviral activity against SARS-CoV-2. The obtained compounds can be used as model structures for creating new direct-acting drugs against modern strains of coronaviruses.


Assuntos
Antivirais , COVID-19 , Animais , Chlorocebus aethiops , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Histidina/farmacologia , Boro/farmacologia , Células Vero , Replicação Viral
18.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615646

RESUMO

In the course of the study, nanocrystalline cobalt monoboride was prepared by thermal decomposition of precursors [Co(DMF)6][An], where [An] = [B12H12]2- (1), [trans-B20H18]2- (2) or [B10Cl10]2- (3) in an argon atmosphere. Three new salt-like compounds 1-3 were prepared when Co(NO3)2 was allowed to react with (Et3NH)2[An]. Compound 1 is new; the structures of compounds 2 and 3 have been previously reported. Samples 1-3 were annealed at 900 °C in argon to form samples 1a-3a, which were characterized by single crystal XRD for 1 and powder XRD for 1-3. Powder XRD on the products showed the formation of BN and CoB for 1a in a 1:1 ratio; 2a gave a higher CoB:BN ratio but an overall decreased crystallinity. For 3a, only CoB was found. IR spectra of samples 1a-3a as well as X-ray spectral fluorescence analysis for 3a confirmed these results. The nanoparticular character of the decomposition products 1a-3a was shown using TEM; quite small particle sizes of about 10-15 nm and a quite normal size distribution were found for 1a and 2a, while the decomposition of 3 gave large particles with 200-350 nm and a broad distribution.

19.
Cancer Biother Radiopharm ; 38(3): 160-172, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36350709

RESUMO

This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Lipossomos , Meios de Contraste , Terapia por Captura de Nêutron de Boro/métodos
20.
Angew Chem Int Ed Engl ; 62(1): e202213470, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36203221

RESUMO

The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.


Assuntos
Boranos , Boro , Estrutura Molecular , Compostos de Boro , Boranos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA