Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Adv Sci (Weinh) ; 11(30): e2308822, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884279

RESUMO

The genetic basis of vertebrate emergence during metazoan evolution has remained largely unknown. Understanding vertebrate-specific genes, such as the tight junction protein Occludin (Ocln), may help answer this question. Here, it is shown that mammary glands lacking Ocln exhibit retarded epithelial branching, owing to reduced cell proliferation and surface expansion. Interestingly, Ocln regulates mitotic spindle orientation and function, and its loss leads to a range of defects, including prolonged prophase and failed nuclear and/or cytoplasmic division. Mechanistically, Ocln binds to the RabGTPase-11 adaptor FIP5 and recruits recycling endosomes to the centrosome to participate in spindle assembly and function. FIP5 loss recapitulates Ocln null, leading to prolonged prophase, reduced cell proliferation, and retarded epithelial branching. These results identify a novel role in OCLN-mediated endosomal trafficking and potentially highlight its involvement in mediating membranous vesicle trafficking and function, which is evolutionarily conserved and essential.


Assuntos
Endossomos , Ocludina , Fuso Acromático , Endossomos/metabolismo , Animais , Ocludina/metabolismo , Ocludina/genética , Camundongos , Fuso Acromático/metabolismo , Transporte Proteico/fisiologia , Junções Íntimas/metabolismo , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos
2.
Curr Top Dev Biol ; 160: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38937029

RESUMO

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.


Assuntos
Morfogênese , Glândulas Salivares , Glândulas Salivares/embriologia , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Animais , Humanos , Membrana Basal/metabolismo , Movimento Celular , Fenômenos Biomecânicos , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Adesão Celular
3.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760574

RESUMO

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Assuntos
Linhagem da Célula , Células Epiteliais , Glândulas Mamárias Animais , Células-Tronco Mesenquimais , Animais , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Morfogênese , Análise de Célula Única , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/embriologia
4.
Dev Biol ; 512: 44-56, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729406

RESUMO

Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.


Assuntos
Sistema Biliar , Mutação , Peixe-Zebra , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Mutação/genética , Sistema Biliar/embriologia , Sistema Biliar/metabolismo , Fenótipo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Elife ; 132024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441552

RESUMO

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Camundongos , Animais , Epitélio/metabolismo , Células Epiteliais/fisiologia , Proliferação de Células , Morfogênese , Mesoderma , Glândulas Mamárias Animais/metabolismo
6.
Toxicol Appl Pharmacol ; 484: 116868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382712

RESUMO

Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.


Assuntos
Benzofenonas , Estradiol , Gravidez , Humanos , Camundongos , Feminino , Animais , Benzofenonas/toxicidade , Estradiol/metabolismo , Morfogênese , RNA Mensageiro/metabolismo , Glândulas Mamárias Animais
7.
Proc Natl Acad Sci U S A ; 121(10): e2309518121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422023

RESUMO

The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.


Assuntos
Diatomáceas , Dióxido de Silício , Dióxido de Silício/química , Diatomáceas/química , Morfogênese
8.
Methods Mol Biol ; 2764: 77-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393590

RESUMO

Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Humanos , Camundongos , Animais , Mama , Organoides , Técnicas de Cultura de Células/métodos , Árvores de Decisões
9.
Dev Cell ; 59(3): 326-338.e5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237591

RESUMO

During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Pâncreas , Células Acinares/metabolismo , Morfogênese/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
10.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37808788

RESUMO

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.

11.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461477

RESUMO

A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.

12.
J Mammary Gland Biol Neoplasia ; 28(1): 19, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479911

RESUMO

The adaptor proteins NCK1 and NCK2 are well-established signalling nodes that regulate diverse biological processes including cell proliferation and actin dynamics in many tissue types. Here we have investigated the distribution and function of Nck1 and Nck2 in the developing mouse mammary gland. Using publicly available single-cell RNA sequencing data, we uncovered distinct expression profiles between the two paralogs. Nck1 showed widespread expression in luminal, basal, stromal and endothelial cells, while Nck2 was restricted to luminal and basal cells, with prominent enrichment in hormone-sensing luminal subtypes. Next, using mice with global knockout of Nck1 or Nck2, we assessed mammary gland development during and after puberty (5, 8 and 12 weeks of age). Mice lacking Nck1 or Nck2 displayed significant defects in ductal outgrowth and branching at 5 weeks compared to controls, and the defects persisted in Nck2 knockout mice at 8 weeks before normalizing at 12 weeks. These defects were accompanied by an increase in epithelial cell proliferation at 5 weeks and a decrease at 8 weeks in both Nck1 and Nck2 knockout mice. We also profiled expression of several key genes associated with mammary gland development at these timepoints and detected temporal changes in transcript levels of hormone receptors as well as effectors of cell proliferation and migration in Nck1 and Nck2 knockout mice, in line with the distinct phenotypes observed at 5 and 8 weeks. Together these studies reveal a requirement for NCK proteins in mammary gland morphogenesis, and suggest that deregulation of Nck expression could drive breast cancer progression and metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Glândulas Mamárias Animais , Animais , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Expressão Gênica
13.
Dev Dyn ; 252(9): 1224-1239, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37227110

RESUMO

BACKGROUND: Kidney development is regulated by cellular interactions between the ureteric epithelium, mesenchyme, and stroma. Previous studies demonstrate essential roles for stromal ß-catenin in kidney development. However, how stromal ß-catenin regulates kidney development is not known. We hypothesize that stromal ß-catenin modulates pathways and genes that facilitate communications with neighboring cell populations to regulate kidney development. RESULTS: We isolated purified stromal cells with wild type, deficient, and overexpressed ß-catenin by fluorescence-activated cell sorting and conducted RNA Sequencing. A Gene Ontology network analysis demonstrated that stromal ß-catenin modulates key kidney developmental processes, including branching morphogenesis, nephrogenesis and vascular formation. Specific stromal ß-catenin candidate target genes that may mediate these effects included secreted, cell-surface and transcriptional factors that regulate branching morphogenesis and nephrogenesis (Wnts, Bmp, Fgfr, Tcf/Lef) and secreted vascular guidance cues (Angpt1, VEGF, Sema3a). We validated established ß-catenin targets including Lef1 and novel candidate ß-catenin targets including Sema3e which have unknown roles in kidney development. CONCLUSIONS: These studies advance our understanding of gene and biological pathway dysregulation in the context of stromal ß-catenin misexpression during kidney development. Our findings suggest that during normal kidney development, stromal ß-catenin may regulate secreted and cell-surface proteins to communicate with adjacent cell populations.


Assuntos
Ureter , beta Catenina , beta Catenina/genética , beta Catenina/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Ureter/metabolismo , Transdução de Sinais
14.
Ecotoxicol Environ Saf ; 256: 114896, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054474

RESUMO

Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.


Assuntos
Triclosan , Gravidez , Animais , Feminino , Criança , Humanos , Mamíferos , Morfogênese/fisiologia , Pulmão , Proteína Morfogenética Óssea 4
15.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108221

RESUMO

The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.


Assuntos
Lectinas , Estômago , Fator Trefoil-2 , Animais , Humanos , Camundongos , Mucinas/genética , Mucinas/metabolismo , Pâncreas/metabolismo , Peptídeos/química , Estômago/química , Suínos , Fator Trefoil-2/metabolismo
16.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861436

RESUMO

Loss of FGF signaling leads to defects in salivary gland branching, but the mechanisms underlying this phenotype remain largely unknown. We disrupted expression of Fgfr1 and Fgfr2 in salivary gland epithelial cells and found that both receptors function coordinately in regulating branching. Strikingly, branching morphogenesis in double knockouts is restored by Fgfr1 and Fgfr2 (Fgfr1/2) knock-in alleles incapable of engaging canonical RTK signaling, suggesting that additional FGF-dependent mechanisms play a role in salivary gland branching. Fgfr1/2 conditional null mutants showed defective cell-cell and cell-matrix adhesion, both of which have been shown to play instructive roles in salivary gland branching. Loss of FGF signaling led to disordered cell-basement membrane interactions in vivo as well as in organ culture. This was partially restored upon introducing Fgfr1/2 wild-type or signaling alleles that are incapable of eliciting canonical intracellular signaling. Together, our results identify non-canonical FGF signaling mechanisms that regulate branching morphogenesis through cell-adhesion processes.


Assuntos
Células Epiteliais , Transdução de Sinais , Adesão Celular/genética , Células Epiteliais/metabolismo , Morfogênese/genética , Glândulas Salivares , Transdução de Sinais/genética , Fatores de Crescimento de Fibroblastos
17.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L433-L444, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791060

RESUMO

Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.


Assuntos
Fatores de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Fatores de Crescimento de Fibroblastos/genética , Pulmão/metabolismo , Morfogênese/fisiologia , Organogênese/genética
18.
Methods Mol Biol ; 2608: 183-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653709

RESUMO

The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Morfogênese/genética , Linhagem da Célula
19.
Toxicol Lett ; 376: 13-19, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638931

RESUMO

Electronic cigarette usage has significantly expanded among young people and pregnant women in the last decade. Although there are already some data regarding the short- and long-term consequences of e-cigarettes on human health, their effect on embryo and lung development still needs to be fully disclosed. In this sense, this study describes, for the first time, the impact of electronic cigarette aerosol on early lung development. For this purpose, ex vivo chick (Gallus gallus) embryonic lungs were cultured in vitro for 48 h in e-cigarette aerosol exposed-medium or unexposed medium. Chick lung explants were also cultured in a cigarette smoke-exposed medium for comparison purposes. Lung explants were morphologically analyzed to assess the impact on lung growth. Additionally, TNF-α levels were determined in the supernatant as a marker of pro-inflammatory response. The results suggest that electronic cigarette aerosol impairs lung growth and promotes lung inflammation. However, its impact on early lung growth seems less detrimental than conventional cigarette smoke. This work provides significant data regarding the impact of e-cig aerosol, adding to the efforts to fully understand its effect on embryo development. The validation of these effects may eventually lead to new tobacco control recommendations for pregnant women.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Adolescente , Animais , Feminino , Humanos , Gravidez , Aerossóis , Galinhas , Pulmão , Nicotiana
20.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602106

RESUMO

Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-ß signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-ß1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-ß signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-ß1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-ß signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.


Assuntos
Glândulas Mamárias Animais , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Morfogênese , Epitélio/metabolismo , Movimento Celular , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA