RESUMO
Mammalian orthoreovirus (reovirus) strains type 1 Lang (T1L) and type 3 Dearing-RV (T3D-RV) infect the intestine in mice but differ in the induction of inflammatory responses. T1L infection is associated with the blockade of oral immunological tolerance to newly introduced dietary antigens, whereas T3D-RV is not. T1L infection leads to an increase in infiltrating phagocytes, including macrophages, in gut-associated lymphoid tissues that are not observed in T3D-RV infection. However, the function of macrophages in reovirus intestinal infection is unknown. Using cells sorted from infected intestinal tissue and primary cultures of bone-marrow-derived macrophages (BMDMs), we discovered that T1L infects macrophages more efficiently than T3D-RV. Analysis of T1L × T3D-RV reassortant viruses revealed that the viral S4 gene segment, which encodes outer-capsid protein σ3, is responsible for strain-specific differences in infection of BMDMs. Differences in the binding of T1L and T3D-RV to BMDMs also segregated with the σ3-encoding S4 gene. Paired immunoglobulin-like receptor B (PirB), which serves as a receptor for reovirus, is expressed on macrophages and engages σ3. We found that PirB-specific antibody blocks T1L binding to BMDMs and that T1L binding to PirB-/- BMDMs is significantly diminished. Collectively, our data suggest that reovirus T1L infection of macrophages is dependent on engagement of PirB by viral outer-capsid protein σ3. These findings raise the possibility that macrophages function in the innate immune response to reovirus infection that blocks immunological tolerance to new food antigens.IMPORTANCEMammalian orthoreovirus (reovirus) infects humans throughout their lifespan and has been linked to celiac disease (CeD). CeD is caused by a loss of oral immunological tolerance (LOT) to dietary gluten and leads to intestinal inflammation following gluten ingestion, which worsens with prolonged exposure and can cause malnutrition. There are limited treatment options for CeD. While there are genetic risk factors associated with the illness, triggers for disease onset are not completely understood. Enteric viruses, including reovirus, have been linked to CeD induction. We found that a reovirus strain associated with oral immunological tolerance blockade infects macrophages by virtue of its capacity to bind macrophage receptor PirB. These data contribute to an understanding of the innate immune response elicited by reovirus, which may shed light on how viruses trigger LOT and inform the development of CeD vaccines and therapeutic agents.
RESUMO
Human noroviruses are the most common cause of viral gastroenteritis, resulting annually in 219â000 deaths and a societal cost of $60 billion, and no antivirals or vaccines are available. The minor capsid protein may play a significant role in the evolution of norovirus. GII.4 is the predominant genotype of norovirus, and its VP2 undergoes epochal co-evolution with the major capsid protein VP1. Since the sudden emergence of norovirus GII.2[P16] in 2016, it has consistently remained a significant epidemic strain in recent years. In the construction of phylogenetic trees, the phylogenetic trees of VP2 closely parallel those of VP1 due to the shared tree topology of both proteins. To investigate the interaction patterns between the major and minor capsid proteins of norovirus GII.2, we chose five representative strains of GII.2 norovirus and investigated their evolutionary patterns using a yeast two-hybrid experiment. Our study shows VP1-VP2 interaction in GII.2, with critical interaction sites at 167-178 and 184-186 in the highly variable region. In the intra-within GII.2, we observed no temporal co-evolution between VP1 and VP2 of GII.2. Notable distinctions were observed in the interaction intensity of VP2 among inter-genotype (P<0.05), highlighting the divergent evolutionary patterns of VP2 within different norovirus genotypes. In summary, the interactions between VP2 and VP1 of GII.2 norovirus exhibit out-of-sync evolutionary patterns. This study offered valuable insights for further understanding and completing the evolutionary mechanism of norovirus.
Assuntos
Proteínas do Capsídeo , Evolução Molecular , Norovirus , Filogenia , Norovirus/genética , Norovirus/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Infecções por Caliciviridae/virologia , Genótipo , Técnicas do Sistema de Duplo-Híbrido , Ligação Proteica , Gastroenterite/virologiaRESUMO
We describe nine Rhizobium microvirus genomes identified in wastewater in Tempe, AZ, USA, between October 2019 and March 2020. The major capsid protein (MCP) encoded in these genomes phylogenetically cluster together and are distinct from the MCPs of Rhizobium microviruses identified in Mexico and Argentina.
RESUMO
The grapevine fleck virus (GFkV) is a ubiquitous grapevine-infecting virus found worldwide, is associated with the grapevine fleck complex, and is often found in mixed infections with viruses of the grapevine leafroll complex and/or vitiviruses. Although GFkV has been studied for a long time, limited sequence information is available in the public databases. In this study, the GFkV sequence data available in GenBank and data generated at the Foundation Plant Services, University of California, Davis, were used to perform nucleotide sequence comparisons, construct a phylogenetic tree, and develop a new RT-qPCR assay. Sequence comparisons showed high genetic diversity among the GFkV isolates, and the phylogenetic analyses revealed a new group comprised of GFkV isolates identified in the present study. A new assay, referred to as GFkV-CP, was designed and validated using an existing GFkV positive control together with 11 samples known to be infected with combinations of different marafiviruses and maculaviruses but not GFkV. In addition, the newly designed assay was used in a field survey to screen grapevines from diverse geographical locations that are maintained at the United States Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR) in Winters, CA.
Assuntos
Proteínas do Capsídeo , Variação Genética , Filogenia , Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Vitis , Proteínas do Capsídeo/genética , Vitis/virologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de DNA , Flexiviridae/genética , Flexiviridae/classificação , Flexiviridae/isolamento & purificaçãoRESUMO
Background and Objectives: Herpes zoster, or shingles, is caused by the varicella-zoster virus (VZV), which initially presents as chickenpox in children. VZV is a global health concern, especially in winter and spring, affecting 10-20% of adults over 50 and posing a 30% risk for the general population. This study used PCR to detect VZV, confirming results with duplicated DNA samples and identifying 234 bp fragments by targeting the gpB gene. Materials and Methods: This study examined 50 herpes zoster cases from October 2020 to April 2021, involving 30 males and 20 females aged 10 to 90, diagnosed by dermatologists. Data were collected via a questionnaire. PCR detected VZV by amplifying the gpB and MCP genes from skin lesion samples. Six positive 234-bp PCR products were sequenced at Macrogen Inc. in Seoul, South Korea. Results: Six DNA samples with 234 bp amplicons were sequenced, showing 99-100% similarity to human alpha herpesvirus sequences in the gpB gene. NCBI BLAST matched these sequences to a reference (GenBank acc. MT370830.1), assigning accession numbers LC642111, LC642112, and LC642113. Eight nucleic acid substitutions caused amino acid changes in the gpB protein: isoleucine to threonine, serine to isoleucine, and threonine to Proline. These variants were deposited in NCBI GenBank as gpB3 samples. Conclusion: The study found high sequence similarity to known VZV sequences, identifying six nucleic acid variations and eight SNPs. Notable amino acid changes in the gpB protein were deposited in NCBI GenBank as the gpB3 sample.
RESUMO
The zoonotic transmission of hepatitis E virus (HEV) genotypes 3 (HEV-3) and 4 (HEV-4), and rabbit HEV (HEV-3ra) has been documented. Vaccination against HEV infection depends on the capsid (open reading frame 2, ORF2) protein, which is highly immunogenic and elicits effective virus-neutralizing antibodies. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles (VLPs). However, research on the production of ORF2 proteins from these HEV genotypes in E. coli to form VLPs has been modest. In this study, we constructed 21 recombinant plasmids expressing various N-terminally and C-terminally truncated HEV ORF2 proteins for HEV-3, HEV-3ra, and HEV-4 in E. coli. We successfully obtained nine HEV-3, two HEV-3ra, and ten HEV-4 ORF2 proteins, which were primarily localized in inclusion bodies. These proteins were solubilized in 4 M urea, filtered, and subjected to gel filtration. Results revealed that six HEV-3, one HEV-3ra, and two HEV-4 truncated proteins could assemble into VLPs. The purified VLPs displayed molecular weights ranging from 27.1 to 63.4 kDa and demonstrated high purity (74.7-95.3%), as assessed by bioanalyzer, with yields of 13.9-89.6 mg per 100 mL of TB medium. Immunoelectron microscopy confirmed the origin of these VLPs from HEV ORF2. Antigenicity testing indicated that these VLPs possess characteristic HEV antigenicity. Evaluation of immunogenicity in Balb/cAJcl mice revealed robust anti-HEV IgG responses, highlighting the potential of these VLPs as immunogens. These findings suggest that the generated HEV VLPs of different genotypes could serve as valuable tools for HEV research and vaccine development.
Assuntos
Proteínas do Capsídeo , Escherichia coli , Genótipo , Vírus da Hepatite E , Hepatite E , Vacinas de Partículas Semelhantes a Vírus , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Animais , Coelhos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Hepatite E/imunologia , Hepatite E/virologia , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Camundongos Endogâmicos BALB C , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/genética , Feminino , Anticorpos Anti-Hepatite/sangue , Anticorpos Anti-Hepatite/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas ViraisRESUMO
Medusavirus is a giant virus classified into an independent family of Mamonoviridae. Amoebae infected with medusavirus release immature particles in addition to virions. These particles were suggested to exhibit the maturation process of this virus, but the structure of these capsids during maturation remains unknown. Here, we apply a block-based reconstruction method in cryo-electron microscopy (cryo-EM) single particle analysis to these viral capsids, extending the resolution to 7-10 Å. The maps reveal a novel network composed of minor capsid proteins (mCPs) supporting major capsid proteins (MCPs). A predicted molecular model of the MCP fitted into the cryo-EM maps clarified the boundaries between the MCP and the underlining mCPs, as well as between the MCP and the outer spikes, and identified molecular interactions between the MCP and these components. Several structural changes of the mCPs under the fivefold vertices of the immature particles were observed, depending on the presence or absence of the underlying internal membrane. In addition, the lower part of the penton proteins on the fivefold vertices was also missing in mature virions. These dynamic conformational changes of mCPs indicate an important function in the maturation process of medusavirus.IMPORTANCEThe structural changes of giant virus capsids during maturation have not thus far been well clarified. Medusavirus is a unique giant virus in which infected amoebae release immature particles in addition to mature virus particles. In this study, we used cryo-electron microscopy to investigate immature and mature medusavirus particles and elucidate the structural changes of the viral capsid during the maturation process. In DNA-empty particles, the conformation of the minor capsid proteins changed dynamically depending on the presence or absence of the underlying internal membranes. In DNA-full particles, the lower part of the penton proteins was lost. This is the first report of structural changes of the viral capsid during the maturation process of giant viruses.
Assuntos
Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , Modelos Moleculares , Vírion , Microscopia Crioeletrônica/métodos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Capsídeo/metabolismo , Vírion/ultraestrutura , Vírus Gigantes/ultraestrutura , Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Montagem de Vírus , Conformação ProteicaRESUMO
Nervous necrosis virus (NNV) capsid protein plays an important role in producing viral particles without any genetic elements. Thus, NNV is a promising candidate for vaccine development and is widely used for constructing vaccines, including DNA, recombinant proteins, and virus-like particles (VLPs). Our study aimed to investigate the potential of NNV capsid protein (NNV) and NNV capsid protein fused to enhanced green fluorescent protein (NNV-EGFP) through VLP formation and whether their application can induce specific antibody responses against certain antigens. We focused on producing DNA and recombinant protein vaccines consisting of the genes for NNV, EGFP, and NNV-EGFP. The approach using NNV-EGFP allowed NNV to act as a carrier or inducer while EGFP was incorporated as part of the capsid protein, thereby enhancing the immune response. In vitro studies demonstrated that all DNA vaccines expressed in HINAE cells resulted in varying protein expression levels, with particularly low levels observed for pNNV and pNNV-EGFP. Consequently, structural proteins derived from HINAE cells could not be observed using transmission electron microscopy (TEM). In contrast, recombinant proteins of NNV and NNV-EGFP were expressed through the Escherichia coli expression system. TEM revealed that rNNV was assembled into VLPs with an approximate size of 30 nm, whereas rNNV-EGFP presented particles ranging from 10 nm to 50 nm in size. For the vaccination test, DNA vaccination marginally induced specific antibody responses in Japanese flounder compared to unvaccinated fish. Meanwhile, NNV and NNV-EGFP recombinant vaccines enhanced a greater anti-NNV antibody response than the others, whereas antibody responses against EGFP were also marginal. These results indicate that NNV capsid protein-based antigens, presenting as particles, play an important role in eliciting a specific anti-NNV antibody response and have the potential to improve fish immune responses.
Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Nodaviridae , Vacinas Virais , Animais , Nodaviridae/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Desenvolvimento de Vacinas , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagemRESUMO
Zika virus (ZIKV), a mosquito-borne Flavivirus of international concern, causes congenital microcephaly in newborns and Guillain-Barré syndrome in adults. ZIKV capsid (C) protein, one of three key structural proteins, is essential for viral assembly and encapsidation. In dengue virus, a closely related flavivirus, the homologous C protein interacts with host lipid systems, namely intracellular lipid droplets, for successful viral replication. Here, we investigate ZIKV C interaction with host lipid systems, showing that it binds host lipid droplets but, contrary to expected, in an unspecific manner. Contrasting with other flaviviruses, ZIKV C also does not bind very-low density-lipoproteins. Comparing with other Flavivirus, capsid proteins show that ZIKV C structure is particularly thermostable and seems to be locked into an auto-inhibitory conformation due to a disordered N-terminal, hence blocking specific interactions and supporting the experimental differences observed. Such distinct structural features must be considered when targeting capsid proteins in drug development.
Assuntos
Proteínas do Capsídeo , Zika virus , Zika virus/química , Zika virus/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Humanos , Ligação Proteica , Modelos MolecularesRESUMO
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV) are members of a group of genetically highly homologous lentiviruses collectively referred to as small ruminant lentiviruses (SRLVs). SRLVs can infect sheep, goats and other small ruminants, causing multisystemic disease with progressive and persistent inflammatory changes, severely reducing animal productivity and impeding animal trade. The capsid protein of SRLVs, p28, is highly conserved among strains and is a commonly used marker for the detection of SRLVs. In this study, two monoclonal antibodies (mAbs), designated G8F7 and A10C12, against p28 were generated using a recombinant p28 protein expressed in Escherichia coli as an immunogen. Functional analysis showed that these two monoclonal antibodies could be used in iELISA, immunofluorescence assays (IFA) and western blot assays to detect p28 or Gag precursor proteins of SRLVs. Two linear epitopes, 61GNRAQKELIQGKLNEEA77 (E61-77) and 187CQKQMDRVLGTRVQQATVEEKMQACR212 (E187-212), which are recognized by G8F7 and A10C12, respectively, were identified through truncation of the GST-fused p28. Amino acid sequence alignment showed that the epitope E61-77 is conserved among SRLVs, with a dominant mutation site (K72R) that does not disrupt recognition by G8F7. E187-212 was found to exhibit variability among SRLVs, but the majority of mutant epitopes are recognized by A10C12, with the exception of a mutant epitope from an isolate with undefined subtypes from Ovis aries, which was not recognized. These findings may facilitate future study of SRLVs and promote the development of methods for the detection of these viruses.
RESUMO
Despite the high prevalence of BK polyomavirus (BKPyV) and the associated risk for BKPyV-associated nephropathy (BKPyVAN) in kidney transplant (KTX) recipients, many details on viral processes such as replication, maturation, assembly and virion release from host cells have not been fully elucidated. VP1 is a polyomavirus-specific protein that is expressed in the late phase of its replicative cycle with important functions in virion assembly and infectious particle release. This study investigated the localization and time-dependent changes in the distribution of VP1-positive viral particles and their association within the spectrum of differing cell morphologies that are observed in the urine of KTX patients upon active BKPyV infection. We found highly differing recognition patterns of two anti-VP1 antibodies with respect to intracellular and extracellular VP1 localization, pointing towards independent binding sites that were seemingly associated with differing stages of virion maturation. Cells originating from single clones were stably cultured out of the urine sediment of KTX recipients with suspected BKPyVAN. The cell morphology, polyploidy, virus replication and protein production were investigated by confocal microscopy using both a monoclonal (mAb 4942) and a polyclonal rabbit anti-VP1-specific antibody (RantiVP1 Ab). Immunoblotting was performed to investigate changes in the VP1 protein. Both antibodies visualized VP1 and the mAb 4942 recognized VP1 in cytoplasmic vesicles exhibiting idiomorphic sizes when released from the cells. In contrast, the polyclonal antibody detected VP1 within the nucleus and in cytoplasm in colocalization with the endoplasmic reticulum marker CNX. At the nuclear rim, VP1 was recognized by both antibodies. Immunoblotting revealed two smaller versions of VP1 in urinary decoy cell extracts, potentially from different translation start sites as evaluated by in silico analysis. Oxford Nanopore sequencing showed integration of BKPyV DNA in chromosomes 3, 4 and 7 in one of the five tested primary cell lines which produced high viral copies throughout four passages before transcending into senescence. The different staining with two VP1-specific antibodies emphasizes the modification of VP1 during the process of virus maturation and cellular exit. The integration of BKPyV into the human genome leads to high virus production; however, this alone does not transform the cell line into a permanently cycling and indefinitely replicating one.
Assuntos
Vírus BK , Vesículas Extracelulares , Infecções por Polyomavirus , Eliminação de Partículas Virais , Vírus BK/fisiologia , Vírus BK/metabolismo , Vírus BK/genética , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/metabolismo , Replicação Viral , Transplante de Rim , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Montagem de Vírus , Infecções Tumorais por Vírus/virologia , Infecções Tumorais por Vírus/metabolismo , Transformação Celular Viral , Masculino , AnimaisRESUMO
Direct-acting antiviral (DAA) drugs have been shown to effectively reduce viral load and cure a high proportion of hepatitis C virus (HCV) infections. However, costs associated with the course of therapy and any possible adverse effects should also be considered. It is important to acknowledge, moreover, that certain groups may not be eligible for treatment. Given that there is currently no approved vaccine for HCV infection, the need for an effective, safe, and accessible treatment remains a crucial priority. The aim of this study is to develop an antisense oligonucleotide (ASO)-based therapeutic drug that can inhibit HCV capsid. After analyzing 817 HCV capsid protein mRNA sequences using the NCBI Virus Data Portal, a conserved region of 7 nucleotides (nt) was identified in all genotypes (1-7). However, because of its high GC% content, this region is not a suitable target for ASO. Conversely, the other highly conserved region, which is only 8 nt long, was preserved in 801 datasets after removing missing and differing sequence data. The candidate ASO was then investigated using computer simulations to assess its potential. Thus, it is possible that the ASO sequence consisting of 8 nt could be a viable therapeutic target for the inhibition of HCV capsid. Furthermore, the 7 nt sequence, which is conserved in all datasets, may be targeted using alternative strategies in lieu of ASO-based targeting.
Assuntos
Antivirais , Proteínas do Capsídeo , Hepacivirus , Oligonucleotídeos Antissenso , Hepacivirus/genética , Hepacivirus/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Antivirais/farmacologia , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/antagonistas & inibidores , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Simulação por ComputadorRESUMO
The Semliki Forest virus capsid protein (C) is an RNA binding protein which exhibits both specific and unspecific affinities to single-strand nucleic acids. The putative use of the self-amplifying RNAs (saRNAs) of alphaviruses for biotechnological purpose is one of the main studied strategies concerning RNA-based therapies or immunization. In this work, a recombinant C protein from SFV was expressed and purified from bacteria and used to associate in vitro with a saRNA derived from SFV. Results showed that the purified form of C protein can associate with the saRNA even after high temperature treatment. The C protein was associated with a modified saRNA coding for the green fluorescent protein (GFP) and delivered to murine macrophage cells which expressed the GFP, showing that the saRNA was functional after being associated with the recombinant purified C protein.
Assuntos
Proteínas do Capsídeo , Macrófagos , RNA Viral , Proteínas Recombinantes , Vírus da Floresta de Semliki , Vírus da Floresta de Semliki/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Recombinantes/genética , RNA Viral/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismoRESUMO
High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
RESUMO
Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.
Assuntos
Proteínas do Capsídeo , Capsídeo , Dependovirus , Terapia Genética , Vetores Genéticos , Dependovirus/genética , Dependovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Vetores Genéticos/genética , Terapia Genética/métodos , Capsídeo/química , Capsídeo/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Estabilidade Proteica , Humanos , Conformação Proteica , Modelos MolecularesRESUMO
Unlike pandemic GII.4 norovirus, GII.6 norovirus shows limited sequence variation in its major capsid protein VP1. In this study, we investigated the VP1 expression profiles, binding abilities, and cross-blocking effects of three GII.6 norovirus strains derived from three distinct variants. Norovirus VP1 was expressed using a recombinant baculovirus expression system and characterized by transmission electron microscopy, mass spectrometry, salivary histo-blood group antigen (HBGA)-virus like particles (VLPs) binding and binding blockade assays. Mass spectrometry revealed the expected molecular weight (MW) of full-length proteins and degraded or cleaved fragments of all three VP1 proteins. Peptide mapping showed loss of 2 and 3 amino acids from the N- and C-terminus, respectively. Further, the co-expression of VP1 and VP2 proteins did not lead to extra fragmentation during mass spectrometry. Salivary HBGA-VLP binding assay revealed similar binding patterns of the three GII.6 VP1 proteins. Salivary HBGA-VLP binding blockade assay induced cross-blocking effects. Our results demonstrate similar binding abilities against salivary HBGAs and specific cross-blocking effects for GII.6 norovirus strains derived from distinct variants, suggesting that fewer GII.6 strains from different evolutionary variants are needed for the development of norovirus vaccines.
Assuntos
Proteínas do Capsídeo , Norovirus , Norovirus/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Humanos , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/virologia , Ligação ProteicaRESUMO
High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
RESUMO
Recent evidence has shown that uncoating and reverse transcription precede nuclear import. These recent breakthroughs have been made possible through the development of innovative biochemical and imaging techniques. This method outlines the biochemical assay used for detecting the presence of the HIV-1 core in the nuclear compartment. In this procedure, human cells are infected with HIV-1NL4-3, with or without the inclusion of PF74, a small molecule that inhibits core entry into the nuclear compartment. Subsequently, cells are separated into cytosolic and nuclear fractions. To assess whether the capsid protein has reached the nuclear compartment, cytosolic and nuclear fractions are subjected to Western blot analysis, utilizing antibodies specific to the HIV-1 capsid protein p24. To validate the true origin of these fractions, Western blot analysis employing antibodies against cytosolic and nuclear markers are also performed. In summary, this assay provides a reliable and efficient means to detect the presence of the HIV-1 capsid protein in the nucleus during infection under various conditions.
Assuntos
Capsídeo , Infecções por HIV , HIV-1 , Humanos , Western Blotting/métodos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proteína do Núcleo p24 do HIV/metabolismo , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Fenilalanina/metabolismo , Fenilalanina/análogos & derivadosRESUMO
Hepatitis E virus is a primary cause of acute hepatitis worldwide. The present study attempts to assess the genetic variability and evolutionary divergence among HEV genotypes. A vaccine promising capsid-protein coding ORF-2 gene sequences of HEV was evaluated using phylogenetics, model-based population genetic methods and principal component analysis. The analyses unveiled nine distinct clusters as subpopulations for six HEV genotypes. HEV-3 genotype samples stratified into four different subgroups, while HEV-4 stratified into three additional subclusters. Rabbit-infectious HEV-3ra samples constitute a distinct cluster. Pairwise analysis identified marked genetic distinction of HEV-4c and HEV-4i subgenotypes compared to other genotypes. Numerous admixed, inter and intragenotype recombinant strains were detected. The MEME method identified several ORF-2 codon sites under positive selection. Some selection signatures lead to amino acid substitutions within ORF-2, resulting in altered physicochemical features. Moreover, a pattern of host-specific adaptive signatures was identified among HEV genotypes. The analyses conclusively depict that recombination and episodic positive selection events have shaped the observed genetic diversity among different HEV genotypes. The significant genetic diversity and stratification of HEV-3 and HEV-4 genotypes into subgroups, as identified in the current study, are noteworthy and may have implications for the efficacy of anti-HEV vaccines.
Assuntos
Proteínas do Capsídeo , Variação Genética , Genótipo , Vírus da Hepatite E , Filogenia , Seleção Genética , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Animais , Humanos , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/genética , Evolução Molecular , Hepatite E/virologia , Coelhos , Análise por Conglomerados , Recombinação Genética , Proteínas ViraisRESUMO
A recent marine metagenomic study has revealed the existence of a novel group of viruses designated mirusviruses, which are proposed to form an evolutionary link between two realms of double-stranded DNA viruses, Varidnaviria and Duplodnaviria. Metagenomic data suggest that mirusviruses infect microeukaryotes in the photic layer of the ocean, but their host range remains largely unknown. In this study, we investigated the presence of mirusvirus marker genes in 1,901 publicly available eukaryotic genome assemblies, mainly derived from unicellular eukaryotes, to identify potential hosts of mirusviruses. Mirusvirus marker sequences were identified in 915 assemblies spanning 227 genera across eight supergroups of eukaryotes. The habitats of the putative mirusvirus hosts included not only marine but also other diverse environments. Among the major capsid protein (MCP) signals in the genome assemblies, we identified 85 sequences that showed high sequence and structural similarities to reference mirusvirus MCPs. A phylogenetic analysis of these sequences revealed their distant evolutionary relationships with the seven previously reported mirusvirus clades. Most of the scaffolds with these MCP sequences encoded multiple mirusvirus homologs, suggesting that mirusviral infection contributes to the alteration of the host genome. We also identified three circular mirusviral genomes within the genomic data of the oil-producing thraustochytrid Schizochytrium sp. and the endolithic green alga Ostreobium quekettii. Overall, mirusviruses probably infect a wide spectrum of eukaryotes and are more diverse than previously reported.