Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.353
Filtrar
1.
Sci Rep ; 14(1): 22893, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358430

RESUMO

Akebia trifoliata is a medicinal plant with high oil content and broad pharmacological effects. To investigate the regulatory mechanisms of key metabolic pathways during seed development, we conducted an integrated multi-omics analysis, including transcriptomics, proteomics, and metabolomics, exploring the dynamic changes in carbon and lipid metabolism. Metabolomics analysis revealded that glucose and sucrose levels decreased, while glycolytic intermediate phosphoenolpyruvate and fatty acids increased with seed development, indicating a shift in carbon flux towards fatty acid synthesis. Integrated transcriptomic and proteomic analyses showed that 70 days after flowering, the expression levels of genes and proteins associated with carbon and fatty acid metabolism were upregulated, suggesting an increased energy demand. Additionally, LEC2, LEC1, WRI1, FUS3, and ABI3 were identified as vital regulators of lipid synthesis. By constructing a multi-omics co-expression network, we identified hub genes such as aroE, GAPDH, KCS, TPS, and hub proteins like PGM, PDH, ENO, PFK, PK, ACCase, SAD, PLC, and OGDH that play critical regulatory roles in seed lipid synthesis. This study provides new ideas for the molecular basis of lipid synthesis in Akebia trifoliata seeds and can facilitate future research on the genetic improvement through molecular-assisted breeding.


Assuntos
Carbono , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Sementes , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Carbono/metabolismo , Proteômica/métodos , Redes Reguladoras de Genes , Metabolômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Multiômica
2.
Front Plant Sci ; 15: 1435154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39403620

RESUMO

Seed vigor is an important trait closely related to improved seed quality and long-term germplasm conservation, and it gradually decreases during storage, which has become a major concern for agriculture. However, the underlying regulatory mechanisms of seed vigor loss in terms of genes remain largely unknown in quinoa. Here, two cultivars of quinoa seeds with different storage performance, Longli No.4 (L4) and Longli No.1 (L1), were subjected to transcriptome sequencing to decipher the pathways and genes possibly related to vigor loss under artificial aging. Multispectral imaging features and germination phenotypes showed significantly less seed vigor loss in L1 than in L4, indicating L1 seeds having stronger aging resistance and storability. Totally, 272 and 75 differentially expressed genes (DEGs) were, respectively, identified in L4 and L1 during aging. Transcriptomic analysis further revealed the differences in metabolic pathways, especially, flavonoid biosynthesis, TCA cycle, and terpenoid backbone biosynthesis were significantly enriched in L4 seeds, while carbon metabolism in L1 seeds, which involved key genes such as CHS, CHI, AACT, ENO1, IDH, NADP-ME, and HAO2L. It indicated that the adverse effects on flavonoids and terpenoids induced by aging might be the significant reasons for more vigor loss in storage sensitive seeds, whereas storage tolerant seeds had a stronger ability to maintain carbon metabolism and energy supply. These findings elucidated the underlying molecular mechanism of seed vigor loss in quinoa, which also provided novel insights into improving seed vigor through modern molecular breeding strategies.

3.
Arch Biochem Biophys ; 761: 110160, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313141

RESUMO

Novel classes of antibiotics are needed to improve the resilience of the healthcare system to antimicrobial resistance (AMR), including vancomycin resistance. vanA gene cluster is a cause of vancomycin resistance. This gene cluster is transferred and spreads vancomycin resistance from Enterococcus spp. to Staphylococcus aureus. Therefore, novel antibacterial agents are required to combat AMR, including vanA-type vancomycin resistance. Serine hydroxymethyltransferase (SHMT) is a key target of antibacterial agents. However, the specific binding mechanisms of SHMT inhibitors remain unclear. Detailed structural information will contribute to understanding these mechanisms. In this study, we found that (+)-SHIN-2, the first in vivo active inhibitor of human SHMT, is strongly bound to the Enterococcus faecium SHMT (efmSHMT). Comparison of the crystal structures of apo- and (+)-SHIN-2-boud efmSHMT revealed that (+)-SHIN-2 stabilized the active site loop of efmSHMT via hydrogen bonds, which are critical for efmSHMT inhibition. Additionally, (+)-SHIN-2 formed hydrogen bonds with serine, forming the Schiff's base with pyridoxal 5'-phosphate, which is a co-factor of SHMT. Furthermore, (+)-SHIN-2 exerted biostatic effects on vancomycin-susceptible and vanA-type vancomycin-resistant E. faecium in vitro, indicating that SHMT inhibitors do not induce cross-resistance to vanA-type vancomycin. Overall, these findings can aid in the design of novel SHMT inhibitors to combat AMR, including vancomycin resistance.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39234988

RESUMO

Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2 × 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CON - OCM, CON + OCM, RES - OCM, and RES + OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (n = 54) being significantly influenced by the main effect of gain (P ≤ 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (P ≤ 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (P ≤ 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.


Maternal nutrition is crucial for pregnancy outcomes, influencing offspring health and productivity. Poor nutrition during pregnancy can lead to fetal growth restrictions, impacting liver development. Such changes can increase the risk of metabolic syndromes and predispose them to impaired immune function. In cattle, optimal nutrition during early pregnancy is essential for reproductive efficiency and herd health. This period is critical for developmental programming through epigenetic changes triggered by environmental or genetic factors. These modifications are heritable which are influenced by maternal diet and play a critical role in determining health outcomes post-birth, relying significantly on the availability of one-carbon metabolites (OCM) like methionine, choline, folate, and vitamin B12. Supplementing these nutrients during early gestation may counteract the negative effects of poor nutrition. This study explores the impact of OCM supplementation and dietary restrictions on the fetal liver metabolism in beef heifers during early gestation. Our findings showed that dietary restrictions decrease fetal liver metabolites, whereas OCM supplementation increases certain metabolites, indicating a compensatory effect to support fetal development under nutrient-restricted conditions. Highlighting the importance of maternal nutrition, our findings provide valuable insights for developing nutritional strategies to enhance livestock efficiency and inform dietary guidelines during pregnancy for better health outcomes.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Fígado , Animais , Bovinos/fisiologia , Feminino , Fígado/metabolismo , Gravidez , Ração Animal/análise , Dieta/veterinária , Feto/metabolismo , Metabolômica , Metaboloma , Fenômenos Fisiológicos da Nutrição Materna
5.
J Nutr ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270851

RESUMO

BACKGROUND: Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES: The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS: Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS: Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS: OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.

6.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273042

RESUMO

Ischemic stroke is one of the leading causes of disability and death globally, with a rising incidence in younger age groups. It is well known that maternal diet during pregnancy and lactation is vital for the early neurodevelopment of offspring. One-carbon (1C) metabolism, including folic acid and choline, plays a vital role in closure of the neural tube in utero. However, the impact of maternal dietary deficiencies in 1C on offspring neurological function following ischemic stroke later in life remains undefined. The aim of this study was to investigate inflammation in the blood and brain tissue of offspring from mothers deficient in dietary folic acid or choline. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. When offspring were 3 months of age, ischemic stroke was induced. One and a half months later, blood and brain tissue were collected. We measured levels of matrix metalloproteases (MMP)-2 and 9 in both plasma and brain tissue, and reported reduced levels of MMP-2 in ChDD male offspring in both tissue types. No changes were observed in MMP-9. This observation supports our working hypothesis that maternal dietary deficiencies in folic acid or choline during early neurodevelopment impact the levels of inflammation in offspring after ischemic stroke.


Assuntos
Encéfalo , Colina , Metaloproteinase 2 da Matriz , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/sangue , Feminino , Encéfalo/metabolismo , Masculino , Camundongos , Gravidez , Colina/metabolismo , Camundongos Endogâmicos C57BL , Dieta , Ácido Fólico/metabolismo , Ácido Fólico/sangue , Metaloproteinase 9 da Matriz/metabolismo , Deficiência de Colina , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/sangue
7.
Antimicrob Agents Chemother ; 68(10): e0094124, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39264188

RESUMO

Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.


Assuntos
Equinococose , Metformina , Metformina/farmacologia , Animais , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Camundongos , Carbono , Glucose/metabolismo , Echinococcus granulosus/efeitos dos fármacos , Echinococcus granulosus/metabolismo , Feminino , Larva/efeitos dos fármacos
8.
Cell Host Microbe ; 32(10): 1758-1773.e4, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39293436

RESUMO

How enteric pathogens adapt their metabolism to a dynamic gut environment is not yet fully understood. To investigate how Salmonella enterica Typhimurium (S.Tm) colonizes the gut, we conducted an in vivo transposon mutagenesis screen in a gnotobiotic mouse model. Our data implicate mixed-acid fermentation in efficient gut-luminal growth and energy conservation throughout infection. During initial growth, the pathogen utilizes acetate fermentation and fumarate respiration. After the onset of gut inflammation, hexoses appear to become limiting, as indicated by carbohydrate analytics and the increased need for gluconeogenesis. In response, S.Tm adapts by ramping up ethanol fermentation for redox balancing and supplying the TCA cycle with α-ketoglutarate for additional energy. Our findings illustrate how S.Tm flexibly adapts mixed fermentation and its use of the TCA cycle to thrive in the changing gut environment. Similar metabolic wiring in other pathogenic Enterobacteriaceae may suggest a broadly conserved mechanism for gut colonization.


Assuntos
Fermentação , Salmonella typhimurium , Animais , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Camundongos , Trato Gastrointestinal/microbiologia , Ciclo do Ácido Cítrico , Camundongos Endogâmicos C57BL , Acetatos/metabolismo , Elementos de DNA Transponíveis , Vida Livre de Germes , Microbioma Gastrointestinal/fisiologia , Etanol/metabolismo , Gluconeogênese , Fumaratos/metabolismo , Mutagênese
9.
Res Sq ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39315254

RESUMO

Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.

10.
Infect Immun ; : e0028424, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324805

RESUMO

Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.

11.
Theriogenology ; 230: 233-242, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39342825

RESUMO

Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 µM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.

12.
Nutr Neurosci ; : 1-8, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230256

RESUMO

Objective: Ischemic stroke is the leading cause of death and disability globally. By addressing modifiable risk factors, particularly nutrition, the prevalence of stroke and its dire consequences can be mitigated. One-carbon (1C) metabolism is a critical biosynthetic process that is involved in neural tube closure, DNA synthesis, plasticity, and cellular proliferation. Folates and choline are two active components of 1C metabolism. We have previously demonstrated that maternal dietary deficiencies during pregnancy and lactation in folic acid or choline result in worse stroke outcomes in offspring. However, there is insufficient data to understand the neuronal mechanisms involved.Methods: Using C57Bl/6J female mice maintained on control, folic acid (0.3 mg/kg) or choline (choline bitrate 300 mg/kg) deficient diets we collected embryonic primary neurons from offspring and exposed them to hypoxic conditions for 6 hours. To determine whether increased levels of either folic acid or choline can rescue reduced neuronal viability, we supplemented cell media with folic acid and choline prior to and after exposure to hypoxia.Results: Our results suggest that maternal dietary deficiencies in either folic acid or choline during pregnancy negatively impacts offspring neuronal viability after hypoxia. Furthermore, increasing levels of folic acid (250 mg/ml) or choline chloride (250 mg/ml) prior to and after hypoxia have a beneficial impact on neuronal viability.Conclusion: The findings contribute to our understanding of the intricate interplay between maternal dietary factors, 1C metabolism, and the outcome of offspring to hypoxic events, emphasizing the potential for nutritional interventions in mitigating adverse outcomes.

13.
J Environ Manage ; 370: 122422, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243653

RESUMO

Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.

14.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1843-1849, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233413

RESUMO

Graphene oxide (GO) is a novel nanomaterial being applied in different fields, but was less used as foliar fertilizer in agriculture. We conducted a pot experiment to analyze the effects of foliar spraying GO from 0 (control), 50 (T1), 100 (T2), 150 (T3) and 200 mg·L-1 (T4) on the morphogenesis and carbon and nitrogen metabolism of kidney bean plants during the initiation of flowering to clarify the physiological effects of foliar spraying GO. The results showed that dry matter accumulation, the content of photosynthetic pigments, soluble sugars of T1 to T4 treatments, were significantly increased by 40.7%-43.4%, 10.4%-80.7%, 6.4%-9.1% in kidney bean plants compared with CK treatment, respectively. T3 treatment performed the best. Meanwhile, the activities of sucrose phosphate synthase, acid converting enzyme and neutral converting enzyme of T3 and T4 treatments were increased by 25.7%-45.5%, 17.4%-28.6%, and 14.7%-20.1%, and the activities of nitrate reductase, glutamine synthetase, and glutamate synthetase of T2 and T3 treatments were increased by 8.1%-15.2%, 11.5%-25.0%, and 89.7%-93.1%, respectively. In conclusion, foliar spraying of appropriate GO in early flowering stage of kidney bean could increase the content of photosynthetic pigments, improve the level of photosynthetic carbon and nitrogen metabolism, and increase dry matter accumulation. T3 treatment (150 mg·L-1) was the most effective in this study.


Assuntos
Carbono , Flores , Grafite , Nitrogênio , Phaseolus , Nitrogênio/metabolismo , Grafite/metabolismo , Carbono/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Phaseolus/efeitos dos fármacos , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/efeitos dos fármacos , Fertilizantes , Fotossíntese/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-39239102

RESUMO

The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.

16.
Int J Biol Sci ; 20(11): 4277-4296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247810

RESUMO

Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.


Assuntos
Fator 4 Ativador da Transcrição , Hemorragia Cerebral , Estresse do Retículo Endoplasmático , Mitocôndrias , Neurônios , eIF-2 Quinase , Fator 4 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Animais , Neurônios/metabolismo , eIF-2 Quinase/metabolismo , Hemorragia Cerebral/metabolismo , Mitocôndrias/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Carbono/metabolismo , Ratos , Camundongos , Masculino , Ratos Sprague-Dawley , Estresse Oxidativo
17.
J Hazard Mater ; 479: 135682, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236542

RESUMO

Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 µg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.


Assuntos
Caprilatos , Carbono , Compostagem , Fluorocarbonos , Substâncias Húmicas , Estresse Oxidativo , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Substâncias Húmicas/análise , Carbono/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Aquat Toxicol ; 275: 107070, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217791

RESUMO

Discharged sewage is the dominant source of urban river pollution. Macrolide antibiotics have emerged as prominent contaminants, which are frequently detected in sewage and rivers and pose a threat to aquatic microbial community. As a typical primary producer, periphyton is crucial for maintaining the biodiversity and functions of aquatic ecosystem. However, effects of antibiotic exposure time as well as the recovery process of periphyton remain undetermined. In the present study, five exposure scenarios of two typical macrolides, erythromycin (ERY) and roxithromycin (ROX) were investigated at 50 µg/L, dose to evaluate their potential detrimental effects on the structure and function of periphyton and the subsequent recovery process in 14 days. Results revealed that the composition of periphytic community returned to normal over the recovery period, except for a few sensitive species. The antibiotics-caused significant photodamage to photosystem II, leading to continuous inhibition of the photosynthetic capacity of periphyton. Furthermore, no significant difference in carbon metabolism capacity was observed after direct antibiotic exposure, while the amine carbon utilization capacity of periphyton remarkably increased during the recovery process. These results indicated that periphyton community was capable of coping with the periodic exposure of antibiotic pollutants and recovering on its own. However, the ecological functions of periphyton can be permanently disturbed due to macrolide exposure. Overall, this study sheds light on the influence of macrolide exposure on the development, structure and function of the periphytic microbial community in rivers.


Assuntos
Antibacterianos , Macrolídeos , Perifíton , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Macrolídeos/toxicidade , Perifíton/efeitos dos fármacos , Roxitromicina/toxicidade , Eritromicina/toxicidade , Fotossíntese/efeitos dos fármacos
19.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273288

RESUMO

Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.


Assuntos
Ácido Fólico , Neoplasias , Doenças Neurodegenerativas , Humanos , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Carbono/metabolismo , Antagonistas do Ácido Fólico/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia
20.
Mar Life Sci Technol ; 6(3): 547-561, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39219687

RESUMO

Coastal ecosystems are an important region for biogeochemical cycling, are a hotspot of anthropogenic disturbance and play a crucial role in global carbon cycling through the metabolic activities of bacterioplankton. Bacterioplankton can be broadly classified into two lifestyles: free-living (FL) and particle-attached (PA). However, how coastal bacterioplankton the community structure, co-occurrence networks and carbon metabolic functions with different lifestyles are differentiated is still largely unknown. Understanding these processes is necessary to better determine the contributions of coastal bacterioplankton to carbon cycling. Here, the characteristics of community structure and carbon metabolism function of bacterioplankton with two lifestyles in the coastal areas of Guangdong Province were investigated using amplicon sequencing, metagenomic, and metatranscriptomic techniques. The results show that the main bacterioplankton responsible for carbon metabolism were the Pseudomonadota, Bacteroidota, and Actinomycetota. The microbial community structure, carbon metabolic function, and environmental preferences differ between different lifestyles. FL and PA bacteria exhibited higher carbon fixation and degradation potentials, respectively. A range of environmental factors, such as dissolved oxygen, pH, and temperature, were associated with the community structure and carbon metabolic functions of the bacterioplankton. Human activities, such as nutrient discharge, may affect the distribution of functional genes and enhance the carbon degradation functions of bacterioplankton. In conclusion, this study increased the understanding of the role of microorganisms in regulating carbon export in coastal ecosystems with intense human activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00245-x.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA