Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(5): 1729-1742, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35478172

RESUMO

Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2 . By fitting the LRU equations to flux measurements on a C3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2 .


Assuntos
Dióxido de Carbono , Ecossistema , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Óxidos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA