Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
Food Chem ; 460(Pt 2): 140578, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39106811

RESUMO

This investigation employed molten globule state ß-lactoglobulin nanoparticles (MG-BLGNPs) for encapsulating linalool (LN) combined with carboxymethyl chitosan (CMC) coating to enhance the shelf-life of fresh-cut apples. The effect of different MG structures on the encapsulation efficiency of BLGNPs and the properties of coating was studied. Structural characterization and molecular simulation showed structural differences between heat-induced MG state (70-BLGNPs, heated at 70 °C for 1 h) and sodium dodecyl sulfate-co-heat-induced MG state (SDS/70-BLGNPs, treated with 0.192 mg/mL SDS for 10 min, then heated at 70 °C for 1 h), with the latter being more unfolded. LN self-assembles into MG-BLGNPs, among the generated particles, SDS/70-BLG@LN exhibits stronger binding effect and higher LN loading capacity. Integration of MG-BLG@LN into CMC enhanced coating's mechanical properties and adhesion to fresh-cut apples. The SDS/70-BLG@LN/CMC coating showed superior preservation on fresh-cut apples during storage, reducing enzymatic browning, membrane lipid oxidation, and microbial growth while maintaining hardness and overall quality.

2.
Biomed Mater ; 19(5)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121891

RESUMO

Polymer nanomicelles have the advantages of small particle size, improved drug solubility, retention effect and enhanced permeability, so they can be used in the treatment of tumour diseases. The aim of this study was to prepare and optimise a nanomicelle which can improve the solubility of insoluble drugs. Firstly, the carboxyl group of cholesterol succinic acid monoester was grafted with the side chain amino group of O-carboxymethyl chitosan-g-cholesterol succinic acid monoester (CCMC), and its structure was characterized by fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Particle size has an important impact on tissue distribution, cell uptake, permeability and inhibition of tumour tissue. In this study, particle size and polydispersity index (PDI) were selected as indexes to optimise the preparation process of CCMC nanomicelles through single factor experiment, Plackett-Burman experiment, the steepest climbing experiment and response surface design experiment. The optimised CCMC nanomicelles showed an average particle size of 173.9 ± 2.3 nm and a PDI of 0.170 ± 0.053. The Cell Counting Kit-8 assay showed no significant effect on cell viability in the range of 0-1000 µg ml-1concentration. Coumarin-6 (C6) was used as a fluorescent probe to investigate the drug-carrying ability of CCMC nanomicelles. C6-CCMC showed 86.35 ± 0.56% encapsulation efficiency with a drug loading of 9.18 ± 0.32%. Both CCMC and C6-CCMC demonstrated excellent stability in different media. Moreover, under the same conditions, the absorption effect of C6 in C6-CCMC nanomicelles was significantly higher than that of free C6 while also exhibiting good sustained-release properties. Therefore, this study demonstrates CCMC nanomicelles as a promising new drug carrier that can significantly improve insoluble drug absorption.


Assuntos
Quitosana , Colesterol , Micelas , Tamanho da Partícula , Quitosana/química , Quitosana/análogos & derivados , Humanos , Colesterol/química , Colesterol/análogos & derivados , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Solubilidade , Polímeros/química , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Linhagem Celular Tumoral , Tiazóis/química , Tiazóis/farmacologia
3.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124540

RESUMO

Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the present work was to establish MSNs as ideal nanocarriers of anticancer drugs such as 5-FU and silymarin by exploiting characteristics such as their large surface area, pore size, and biocompatibility. Furthermore, coating with various biopolymeric materials such as carboxymethyl chitosan-dopamine and hyaluronic acid-folic acid on their surface would allow them to play the role of ligands in the process of active targeting to tumor cells in which there is an overexpression of specific receptors for them. From the results obtained, it emerged, in fact, that these hybrid nanoparticles not only inhibit the growth of glioblastoma and breast cancer cells, but also act as pH-responsive release systems potentially useful as release vectors in tumor environments.

4.
Int J Biol Macromol ; 278(Pt 3): 134709, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159797

RESUMO

In this work, tannic acid was selected as a green cross-linking agent to cross-link carboxymethyl chitosan to prepare a magnetic adsorbent (CC-OTA@Fe3O4), which was used to remove methylene blue (MB) and Cu2+. CC-OTA@Fe3O4 was characterized by FTIR, 13C NMR, XRD, VSM, TGA, BET and SEM. The adsorption behavior was studied using various parameters such as pH value, contact time, initial concentration of MB and Cu2+, and temperature. The results showed that adsorption of MB and Cu2+ followed the pseudo-second-order model and the Sips model. The maximum adsorption capacities were determined to be 560.92 and 104.25 mg/g MB and Cu2+ at 298 K, respectively. Thermodynamic analysis showed that the adsorption is spontaneous and endothermic in nature. According to the results of FTIR and XPS analyses, the electrostatic interaction was accompanied by π-π interaction and hydrogen bonding for MB adsorption, while complexation and electrostatic interaction were the predominant mechanism for Cu2+ adsorption. Furthermore, CC-OTA@Fe3O4 displayed remarkable stability in 0.1 M HNO3, exhibited promising recyclability, and could be easily separated from aqueous solutions in the magnetic field. This study demonstrates the potential of CC-OTA@Fe3O4 as an adsorbent for the removal of cationic dyes and heavy metals from wastewater.

5.
Food Chem X ; 23: 101690, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39170065

RESUMO

The emulsification stability of microalgae protein (MP) is limited to strongly alkaline conditions, restricting its applications in food processing. This study aims to investigate the capability of carboxymethyl chitosan (CMCS) to improve MP's emulsification stability over a wider pH range. Results indicated soluble MP-CMCS complexes formed at pH 2, 4, and 7, while aggregation of the complexes occurred at pH 8. The complexes stabilized emulsions exhibited smaller droplet sizes and higher absolute zeta potential at pH 2, 4, and 7 compared to pH 8. After 2 weeks of storage, emulsions remained stable at pH 2, 4, and 7, with significant delamination at pH 8. Laser confocal microscopy confirmed uniform droplet distribution at pH 2 and 7, with slight fusion at pH 4. The complexes stabilized emulsions exhibited higher viscosity and shear stress than MP stabilized emulsions at pH 2, 4, and 7. The stronger viscoelastic properties and higher storage moduli (G') values of MP-CMCS complexes under acidic and neutral conditions indicated stronger intermolecular interactions compared to alkaline conditions. The increase in G' and loss moduli (G") values for emulsions at pH 8 under stress highlighted the significant impact on network structure strength and viscosity in these emulsions. This study elucidated the binding interactions between MP and CMCS under various pH conditions, and demonstrated a feasible approach to improving MP's emulsification stability over a wider pH range.

6.
Int J Biol Macromol ; : 134943, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173799

RESUMO

Carboxymethyl chitosan (CMCS) and sodium alginate (SA), which are excellent polysaccharide-based hemostatic agents, are capable of forming polyelectrolyte complexes (PEC) through electrostatic interactions. However, CMCS/SA PEC sponges prepared by the conventional sol-gel process exhibited slow liquid absorption rate and poor mechanical properties post-swelling. In this work, a novel strategy involving freeze casting followed by acetic acid vapor treatment to induce electrostatic interactions was developed to fabricate novel PEC sponges with varying CMCS/SA mass ratios. Compared to sol-gel process sponges, the novel sponges exhibited a higher density of electrostatic interactions, resulting in denser pore walls that resist re-gelation and swelling according to FTIR, XRD, and SEM analyses. Additionally, the liquid absorption kinetics, as well as compression and tension tests, demonstrated that the novel sponges had significantly improved rapid blood absorption capacity and mechanical properties. Furthermore, in vitro coagulation and drug release studies showed that the novel sponge had a lower blood clotting index and clotting time, along with a slower drug release rate after loading with berberine hydrochloride, showcasing its potential as a rapid hemostatic dressing with controlled drug release capabilities.

7.
J Nanobiotechnology ; 22(1): 439, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061033

RESUMO

Skin wound infection has become a notable medical threat. Herein, the polysaccharide-based injectable hydrogels with multifunctionality were developed by a simple and fast gelation process not only to inactivate bacteria but also to accelerate bacteria-infected wound healing. Sodium nitroprusside (SNP) loaded PCN-224 nanoparticles were introduced into the polymer matrix formed by the dynamic and reversible coordinate bonds between Ag+ with carboxyl and amino or hydroxyl groups on carboxymethyl chitosan (CMCS), hydrogen bonds and electrostatic interactions in the polymer to fabricate SNP@PCN@Gel hydrogels. SNP@PCN@Gel displayed interconnected porous structure, excellent self-healing capacity, low cytotoxicity, good blood compatibility, and robust antibacterial activity. SNP@PCN@Gel could produce reactive oxygen species (ROS) and NO along with Fe2+, and showed long-term sustained release of Ag+, thereby effectively killing bacteria by synergistic photothermal (hyperthermia), photodynamic (ROS), chemodynamic (Fenton reaction), gas (NO) and ion (Ag+ and -NH3+ in CMCS) therapy. Remarkably, the hydrogels significantly promoted granulation tissue formation, reepithelization, collagen deposition and angiogenesis as well as wound contraction in bacteria-infected wound healing. Taken together, the strategy represented a general method to engineer the unprecedented photoactivatable "all-in-one" hydrogels with enhanced antibacterial activity and paved a new way for development of antibiotic alternatives and wound dressing.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Nitroprussiato/farmacologia , Nitroprussiato/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Prata/química , Prata/farmacologia , Nanopartículas/química , Infecção dos Ferimentos/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
8.
Front Bioeng Biotechnol ; 12: 1421887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081333

RESUMO

Acidic bacterial biofilms-associated enamel white spot lesions (WSLs) are one of the hallmarks of early caries, causing demineralization and decomposition of dental hard tissues. Therefore, to effectively prevent and treat WSLs, it is important to inhibit the activity of cariogenic bacteria while promoting the remineralization of demineralized enamel. Amorphous calcium phosphate (ACP) favors hard tissue remineralization due to its biological activity and ability to release large amounts of Ca2+ and PO4 3-. However, ACP-based biomineralization technology is not effective due to its lack of antimicrobial properties. Here, carboxymethyl chitosan (CMCS) was employed as a reducing agent and stabilizer, and dual-functional nanohybrids CMCS/AuNPs/ACP with biofilm resistance and mineralization properties were successfully synthesized. The addition of AuNPs enhances the antimicrobial activity and participates in regulating the formation of hydroxyapatite (HAp). The nanohybrids exhibited significant destructive effects against cariogenic bacteria and their biofilms and showed bactericidal activity under bacteria-induced acidic conditions. More importantly, this nanohybrids showed superior results in promoting the remineralization of demineralized enamel, compared to fluoride and CMCS/ACP in vitro. The CMCS/AuNPs/ACP nanohybrids not only reverse the cariogenic microenvironment at the microbial level, but also promote self-repairing of enamel WSLs regarding the microstructure. The present work offers a theoretical and experimental basis for using the CMCS/AuNPs/ACP nanohybrids as a potential dual-functional agent for the clinical treatment of enamel WSLs.

9.
Int J Biol Macromol ; 275(Pt 2): 133589, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084970

RESUMO

The influence of Carboxymethyl chitosan (CMCS) on the emulsification stability mechanism of casein (CN) and its effects on the stability of whole nutrient emulsions were investigated. The complex solutions of CN and CMCS were prepared and the turbidity, ultraviolet (UV) absorption spectrum, fluorescence spectrum, circular dichroism (CD) spectrum, Fourier transform infrared (FTIR) spectrum, interfacial tension and microstructural observations were used to study the inter-molecular interaction of CMCS and CN. The effects of CMCS on the emulsion stability of CN were further analyzed by particle size, ζ-potential, instability index and rheological properties. Moreover, the accelerated stability of whole nutrient emulsions prepared by CMCS and CN was evaluated. The results revealed that CN-CMCS complexes were mainly formed by hydrogen bonding. The stability of the CN-CMCS composite emulsions were improved, as evidenced by the interfacial tension decreasing from 165.96 mN/m to 158.49 mN/m, the particle size decreasing from 45.85 µm to 12.98 µm, and the absolute value of the potential increasing from 29.8 mV to 33.5 mV. The stability of whole nutrient emulsion was also significantly enhanced by the addition of CN-CMCS complexes. Therefore, CN-CMCS complex could be served as a novel emulsifier to improve the stability of O/W emulsions.


Assuntos
Caseínas , Quitosana , Emulsões , Tamanho da Partícula , Quitosana/química , Quitosana/análogos & derivados , Emulsões/química , Caseínas/química , Reologia , Tensão Superficial , Nutrientes/química , Água/química , Ligação de Hidrogênio
10.
Int J Biol Macromol ; 275(Pt 2): 133559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955300

RESUMO

pH could play vital role in the wound healing process due to the bacterial metabolites, which is one essential aspect of desirable wound dressings lies in being pH-responsive. This work has prepared a degradable hyaluronic acid hydrogel dressing with wound pH response-ability. The aldehyde-modified hyaluronic acid (AHA) was obtained, followed by complex mixture formation of eugenol and oregano antibacterial essential oil in the AHA-CMCS hydrogel through the Schiff base reaction with carboxymethyl chitosan (CMCS). This hydrogel composite presents pH-responsiveness, its disintegration mass in acidic environment (pH = 5.5) is 4 times that of neutral (pH = 7.2), in which the eugenol release rate increases from 37.6 % to 82.1 %. In vitro antibacterial and in vivo wound healing investigations verified that hydrogels loaded with essential oils have additional 5 times biofilm removal efficiency, and significantly accelerate wound healing. Given its excellent anti-biofilm and target-release properties, the broad application of this hydrogel in bacteria-associated wound management is anticipated.


Assuntos
Antibacterianos , Biofilmes , Ácido Hialurônico , Hidrogéis , Óleos Voláteis , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Concentração de Íons de Hidrogênio , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bandagens
11.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955344

RESUMO

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Assuntos
Materiais Biocompatíveis , Cimentos Ósseos , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Quitosana , Força Compressiva , Compostos de Magnésio , Teste de Materiais , Osteoblastos , Osteogênese , Quitosana/química , Quitosana/análogos & derivados , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos
12.
ACS Nano ; 18(29): 18963-18979, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39004822

RESUMO

Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Hidrogéis , Inibidores de Checkpoint Imunológico , Nanocompostos , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Hidrogéis/química , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/patologia , Camundongos , Quitosana/química , Quitosana/análogos & derivados , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Nanocompostos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Glicerol/química , Glicerol/análogos & derivados , Linhagem Celular Tumoral , Polímeros/química , Poliésteres
13.
Environ Sci Pollut Res Int ; 31(37): 49626-49645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080170

RESUMO

Different dyes are discharged into water streams, causing significant pollution to the entire ecosystem. The present work deals with the removal of acid red 2 dye (methyl red-as an anionic dye) by green sorbents based on chitosan derivatization. In this regard, two classes of chitosan derivatives-a total of six-were prepared by gamma irradiation at 30 kGy. The first group (group A) constitutes a crosslinked chitosan/polyacrylamide/aluminum oxide with different feed ratios, while the second group, identified as group B, is composed of crosslinked carboxymethyl chitosan/polyacrylamide/aluminum oxide with different ratios. Glycerol was added to soften the resultant hydrogels. The products were characterized by different tools, including FTIR for confirming the chemical modification, TGA for investigating their thermal properties, and XRD for verifying their crystalline structure. The morphology of the prepared derivatives was studied through SEM, while their topography before and after dye adsorption was monitored via the AFM. The removal efficiencies of the prepared sorbents were verified at different operation conditions, such as pH, temperature, adsorbent dose, initial concentration of dye solutions, and contact time. The data revealed that the optimum conditions for maximum dye uptake were as follows: pH 4, contact time 120 min, 0.1-g sorbent dose, and 50-ppm dye concentration. Additionally, the prepared sorbents demonstrated potent adsorption capacity and removal efficiency. It was found that the elements of the second group displayed higher performance than their counterparts. The data showed also that the adsorption process best fits with the Freundlich model and obeyed pseudo-first-order kinetic isotherm. In addition, the synthesized composites showed observable antibacterial potency toward E. coli as a Gram-negative bacterium and S. aureus as a Gram-positive bacterium.


Assuntos
Óxido de Alumínio , Compostos Azo , Quitosana , Hidrogéis , Poluentes Químicos da Água , Quitosana/química , Hidrogéis/química , Poluentes Químicos da Água/química , Adsorção , Compostos Azo/química , Óxido de Alumínio/química , Corantes/química , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio
14.
Int J Biol Macromol ; 275(Pt 2): 133465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945322

RESUMO

O-carboxymethyl chitosan (O-CMC) is a chitosan derivative produced through the substitution of hydroxyl (-OH) functional groups in glucosamine units with carboxymethyl (-CH2COOH) substituents, effectively addressing the inherent solubility issues of chitosan in aqueous solutions. O-CMC has garnered significant interest due to its enhanced solubility, elevated viscosity, minimal toxicity, and advantageous biocompatibility properties. Furthermore, O-CMC demonstrates antibacterial, antifungal, and antioxidant characteristics, rendering it a promising candidate for various biomedical uses such as wound healing, tissue engineering, anti-tumor therapies, biosensors, and bioimaging. Additionally, O-CMC is well-suited for the fabrication of nanoparticles, hydrogels, films, microcapsules, and tablets, offering opportunities for effective drug delivery systems. This review outlines the distinctive features of O-CMC, offers analyses of advancements and future potential based on current research, examines significant obstacles for clinical implementation, and foresees its ongoing significant impacts in the realm of biomedicine.


Assuntos
Quitosana , Quitosana/química , Quitosana/análogos & derivados , Humanos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Hidrogéis/química , Portadores de Fármacos/química
15.
J Colloid Interface Sci ; 673: 395-410, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878374

RESUMO

In emergencies, uncontrolled severe bleeding can result in undesired complications and even death of the injured. Designing advanced hemostatic agents is a potential solution for emergency hemostasis, yet it remains challenging to realize the persistent adhesion in a wet wound environment. In this study, based on dynamic reversible Schiff base bond and photo-initiated double-bond polymerization, a novel injectable hemostatic hydrogel (L-COC) consisting of methacrylated carboxymethyl chitosan (CMCSMA), oxidized konjac glucomannan (OKGM) and (+)-catechin hydrate (CH) was synthesized for emergency hemostasis. To our delight, the incorporated CH imparted enhanced blood procoagulantion to the L-COC hydrogel by intensifying the hydrogel-red blood cell interactions. As a result, the hemostatic effect of the engineered L-COC hydrogel was significantly superior to that of fluid gelatin SurgifloTM for liver bleeding wounds in rats (Blood loss: 0.62 ± 0.11 g (L-COC), 0.90 ± 0.08 g (SurgifloTM); hemostasis time: 69.0 ± 2.9 s (L-COC), 84.0 ± 2.2 s (SurgifloTM)). With the favorable antioxidant and antibacterial activities, as well as multifunctional properties, the bio-adhesive L-COC hydrogel and the underlying design principles may facilitate further development of practical hemostatic hydrogels.


Assuntos
Antibacterianos , Antioxidantes , Quitosana , Hemorragia , Hemostáticos , Hidrogéis , Ratos Sprague-Dawley , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/síntese química , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Ratos , Hemorragia/tratamento farmacológico , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Hemostasia/efeitos dos fármacos , Masculino , Injeções , Adesivos/química , Adesivos/farmacologia , Tamanho da Partícula , Escherichia coli/efeitos dos fármacos , Mananas
16.
Int J Biol Macromol ; 274(Pt 1): 133265, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909732

RESUMO

Hemostasis is the first step of emergency medical treatment. It is particularly important to develop rapid-acting and efficacious hemostatic materials. Carboxymethyl chitosan (CMCS), sodium alginate (SA) and Resina Draconis (RD) were composited uniformly by polyelectrolyte blending. Their composite sponges (CMCS/SA/RD) were prepared by freeze-induced phase separation. CMCS/SA/RD sponges were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, and their blood absorption and hemolysis ratio were analyzed. The hemostatic effect of the composite sponges was evaluated by coagulation in vitro and in vivo. The composite sponges had a porous network structure. The water absorption ratio was >8000 %, and hemolysis ratio was <5 %. CMCS/SA/RD-II and CMCS/SA/RD-III composite sponges shortened the coagulation time in vitro by 11.33 s and 9.66 s, the hepatic hemostasis time by 13.8 % and 23.3 %, and the hemostasis time after mouse-tail amputation by 28.9 % and 23.9 %, respectively. A preliminary study on its coagulation mechanism showed that CMCS/SA/RD had significant effects on erythrocyte adsorption, platelet adhesion, and shortening of the activated partial thromboplastin time.


Assuntos
Alginatos , Coagulação Sanguínea , Quitosana , Hemostasia , Hemostáticos , Quitosana/química , Quitosana/análogos & derivados , Alginatos/química , Animais , Hemostasia/efeitos dos fármacos , Camundongos , Hemostáticos/química , Hemostáticos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Int J Biol Macromol ; 273(Pt 1): 132993, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862049

RESUMO

Low ionic conductivity and poor interface stability of poly(ethylene oxide) (PEO) restrict the practical application as polymeric electrolyte films to prepare solid-state lithium (Li) metal batteries. In this work, biomass-based carboxymethyl chitosan (CMCS) is designed and developed as organic fillers into PEO matrix to form composite electrolytes (PEO@CMCS). Carboxymethyl groups of CMCS fillers can promote the decomposition of Lithium bis(trifluoromethane sulfonimide) (LiTFSI) to generate more lithium fluoride (LiF) at CMCS/PEO interface, which not only forms ionic conductive network to promote the rapid transfer of Li+ but also effectively enhances the interface stability between polymeric electrolyte and Li metal. The enrichment of carboxyl, hydroxyl, and amidogen functional groups within CMCS fillers can form hydrogen bonds with ethylene oxide (EO) chains to improve the tensile properties of PEO-based electrolyte. In addition, the high hardness of CMCS additives can also strengthen mechanical properties of PEO-based electrolyte to resist penetration of Li dendrites. LiLi symmetric batteries can achieve stable cycle for 2500 h and lithium iron phosphate full batteries can maintain 135.5 mAh g-1 after 400 cycles. This work provides a strategy for the enhancement of ion conductivity and interface stability of PEO-based electrolyte, as well as realizes the resource utilization of biomass-based CMCS.


Assuntos
Quitosana , Condutividade Elétrica , Fontes de Energia Elétrica , Eletrólitos , Lítio , Polietilenoglicóis , Quitosana/química , Quitosana/análogos & derivados , Polietilenoglicóis/química , Lítio/química , Eletrólitos/química , Íons/química
18.
Biomed Mater ; 19(4)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838692

RESUMO

At present, wound dressings in clinical applications are primarily used for superficial skin wounds. However, these dressings have significant limitations, including poor biocompatibility and limited ability to promote wound healing. To address the issue, this study used aldehyde polyethylene glycol as the cross-linking agent to design a carboxymethyl chitosan-methacrylic acid gelatin hydrogel with enhanced biocompatibility, which can promote wound healing and angiogenesis. The CSDG hydrogel exhibits acid sensitivity, with a swelling ratio of up to 300%. Additionally, it exhibited excellent resistance to external stress, withstanding pressures of up to 160 kPa and self-deformation of 80%. Compared to commercially available chitosan wound gels, the CSDG hydrogel demonstrates excellent biocompatibility, antibacterial properties, and hemostatic ability. Bothin vitroandin vivoresults showed that the CSDG hydrogel accelerated blood vessel regeneration by upregulating the expression of CD31, IL-6, FGF, and VEGF, thereby promoting rapid healing of wounds. In conclusion, this study successfully prepared the CSDG hydrogel wound dressings, providing a new approach and method for the development of hydrogel dressings based on natural macromolecules.


Assuntos
Materiais Biocompatíveis , Quitosana , Gelatina , Hidrogéis , Metacrilatos , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Cicatrização/efeitos dos fármacos , Gelatina/química , Hidrogéis/química , Animais , Metacrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Humanos , Polietilenoglicóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Bandagens , Masculino , Reagentes de Ligações Cruzadas/química , Regeneração/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Teste de Materiais , Ratos
19.
Int J Biol Macromol ; 273(Pt 1): 132872, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942671

RESUMO

Diseases caused by viruses pose a significant risk to the health of aquatic animals, for which there are presently no efficacious remedies. Interferon (IFN) serving as an antiviral agent, is frequently employed in clinical settings. Due to the unique living conditions of aquatic animals, traditional injection of interferon is cumbersome, time-consuming and labor-intensive. This study aimed to prepare IFN microcapsules through emulsion technique by using resistant starch (RS) and carboxymethyl chitosan (CMCS). Optimization was achieved using the Box-Behnken design (BBD) response surface technique, followed by the creation of microcapsules through emulsification. With RS at a concentration of 1.27 %, a water­oxygen ratio of 3.3:7.4, CaCl2 at 13.67 %, CMCS at 1.04 %, the rate of encapsulation can escalate to 80.92 %. Rainbow trout infected with Infectious hematopoietic necrosis virus (IHNV) and common carp infected with Spring vireemia (SVCV) exhibited a relative survival rate (RPS) of 65 % and 60 % after treated with IFN microcapsules, respectively. Moreover, the microcapsules effectively reduced the serum AST levels and enhanced the expression of IFNα, IRF3, ISG15, MX1, PKR and Viperin in IHNV-infected rainbow trout and SVCV-infected carp. In conclusion, this integrated IFN microcapsule showed potential as an antiviral agent for treatment of viral diseases in aquaculture.


Assuntos
Interferon-alfa , Oncorhynchus mykiss , Proteínas Recombinantes , Animais , Oncorhynchus mykiss/virologia , Interferon-alfa/farmacologia , Proteínas Recombinantes/farmacologia , Cápsulas , Antivirais/farmacologia , Antivirais/química , Composição de Medicamentos , Quitosana/química , Quitosana/análogos & derivados , Vírus da Necrose Hematopoética Infecciosa/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Doenças dos Peixes/virologia , Doenças dos Peixes/tratamento farmacológico
20.
Carbohydr Polym ; 339: 122209, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823899

RESUMO

The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.


Assuntos
Alginatos , Antibacterianos , Bandagens , Quitosana , Hidrogéis , Nanofibras , Cicatrização , Nanofibras/química , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Concentração de Íons de Hidrogênio , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Alginatos/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Tetraciclina/química , Tetraciclina/farmacologia , Camundongos , Infecção dos Ferimentos/tratamento farmacológico , Polissacarídeos/química , Escherichia coli/efeitos dos fármacos , Bases de Schiff/química , Testes de Sensibilidade Microbiana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA