Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 19(1): 4, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653871

RESUMO

Cassava is the most cultivated and consumed root crop in the world. One of the major constraints to the cassava value chain is the short shelf life of cassava storage roots which is primarily due to the so-called post-harvest physiological deterioration (PPD). The identification of natural sources of PPD tolerance represents a key approach to mitigating PPD losses by generating farmer- and industry-preferred cassava cultivars with prolonged shelf life. In the present study, a PPD assessment method was developed to screen for PPD tolerance in the cassava germplasm. The proposed PPD assessment method displayed a reduced rate of microbial infection and allowed a rapid and homogenous development of typical PPD symptoms in the cassava storage roots. We successfully used the PPD assessment method in combination with an image-based PPD scoring method to identify and characterize PPD tolerance in 28 cassava cultivars from the Indonesian cassava germplasm. Our analysis showed a significant and positive correlation between PPD score and dry matter content (r = 0.589-0.664, p-value < 0.001). Analysis of additional root parameters showed a significant and positive correlation between PPD scores at 2 days post-harvest (dph) and root length (r = 0.388, p-value < 0.05). Our analysis identified at least 4 cultivars displaying a significantly delayed onset of PPD symptoms as compared to the other selected cultivars. The availability of cassava cultivars contrasting for tolerance to PPD will be particularly instrumental to understanding the molecular mechanisms associated with delayed PPD in cassava roots.

2.
Front Plant Sci ; 12: 720532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880882

RESUMO

Cassava mosaic geminiviruses (CMGs) and cassava brown streak viruses (CBSVs) cause the highest yield losses in cassava production in Africa. In particular, cassava brown streak disease (CBSD) is and continues to be a significant constraint to optimal cassava production in Eastern and Southern Africa. While CBSD has not been reported in West Africa, its recent rapid spread and damage to cassava productivity in Eastern, and Southern Africa is alarming. The aim of this study was to evaluate Nigerian cassava genotypes in order to determine their responses to CBSD, in the event that it invades Nigeria, the world's largest cassava producer. The study gathered information on whether useful CBSD resistance alleles are present in the elite Nigerian cassava accessions. A total of 1,980 full-sib cassava seedlings from 106 families were assessed in the field at the seedling stage for a year. A subset of 569 clones were selected and assessed for another year at the clonal stage in Namulonge, central Uganda, a known hotspot for CBSD screening. Results indicated that foliar and root incidences and severities varied significantly (p ≤ 0.01, p ≤ 0.001) except for CBSD foliar incidence at 6 months (CBSD6i ). Highest and lowest plot-based heritability estimates for CBSD were registered for CBSD root severity (CBSD rs ) (0.71) and CBSD6i (0.5). Positive and highly significant correlations were noted between CBSD root incidence (CBSD ri ) and CBSD rs (r = 0.90***). Significant positive correlations were also noted between CBSD foliar severity at 3 months (CBSD3s ) and CBSD foliar incidence at 6 months (CBSD6i ) (r = 0.77***), CBSD3s and CBSD rs (r = 0.35***). Fresh root weight (Fresh RW ) negatively correlated with CBSD ri and CBSD rs , respectively (r = -0.21*** and r = -0.22***). Similarly, CBSD3s correlated negatively with cassava mosaic disease severity at 3 (CMD3s ) and 6 months (CMD6s ), respectively (r = -0.25*** and r = -0.21***). Fifteen clones were selected using a non-weighted summation selection index for further screening. In conclusion, results revealed that the elite Nigerian accessions exhibited significant susceptibility to CBSD within 2 years of evaluation period. It is expected that this information will aid future breeding decisions for the improvement of CBSD resistance among the Nigerian cassava varieties.

3.
Plants (Basel) ; 9(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823622

RESUMO

Cassava brown streak disease (CBSD) caused by the Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is a threat to cassava production in Africa. The potential spread of CBSD into West Africa is a cause for concern, therefore screening for resistance in farmer-preferred genotypes is crucial for effective control and management. We multiplied a selection of eleven cassava cultivars grown by farmers in Ghana to test their response to a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates using a stringent top-cleft graft inoculation method. Virus titers were quantified in the inoculated scions and cuttings propagated from the inoculated scions to assess virus accumulation and recovery. All cultivars were susceptible to the mixed infection although their response and symptom development varied. In the propagated infected scions, CBSV accumulated at higher titers in leaves of eight of the eleven cultivars. Visual scoring of storage roots from six-month-old virus-inoculated plants revealed the absence of CBSD-associated necrosis symptoms and detectable titers of CBSVs in the cultivar, IFAD. Although all eleven cultivars supported the replication of CBSV and UCBSV in their leaves, the absence of virus replication and CBSD-associated symptoms in the roots of some cultivars could be used as criteria to rapidly advance durable CBSD tolerance using breeding and genetic engineering approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA