Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Colloids Surf B Biointerfaces ; 245: 114289, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366107

RESUMO

Alkali proteases are crucial in numerous industries, especially in the laundry industry, but their inactivation by surfactants limits their effectiveness. This study employed substrate access tunnel engineering to improve the performance of WT bcPRO in surfactants. By modifying the key residues in the substrate pocket, the best variant N212S showed higher stability and activity in both AES and LAS. Molecular dynamics (MD) simulations provided insights into the enhanced stability and activity. The Asn212Ser mutation weakened the anti-correlation motion, increased the number of hydrogen bonds between amino acid residues, and made the protein structure more compact, contributing to its stability. Additionally, the mutation extended the substrate access tunnel and enabled additional interactions with the substrate, enhancing its catalytic activity in surfactants. This study demonstrates a strategy for reshaping the substrate access tunnel to improve protease stability and activity in surfactant environments, offering a promising protease candidate for the laundry industry.

2.
Plant Mol Biol ; 114(5): 98, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254882

RESUMO

L-Lactate is a commodity chemical used in various fields. Microorganisms have produced L-lactate via lactic fermentation using saccharides derived from crops as carbon sources. Recently, L-lactate production using microalgae, whose carbon source is carbon dioxide, has been spotlighted because the prices of the crops have increased. A red alga Cyanidioschyzon merolae produce L-lactate via lactic fermentation under dark anaerobic conditions. The L-lactate titer of C. merolae is higher than those of other microalgae but lower than those of heterotrophic bacteria. Therefore, an increase in the L-lactate titer is required in C. merolae. L-Lactate dehydrogenase (L-LDH) catalyzes the reduction of pyruvate to L-lactate during lactic fermentation. C. merolae possesses five isozymes of L-LDH. The results of previous transcriptome analysis suggested that L-LDHs are the key enzymes in the lactic fermentation of C. merolae. However, their biochemical characteristics, such as catalytic efficiency and tolerance for metabolites, have not been revealed. We compared the amino acid sequences of C. merolae L-LDHs (CmLDHs) and characterized one of the isozymes, CmLDH1. BLAST analysis revealed that the sequence similarities of CmLDH1 and the other isozymes were above 99%. The catalytic efficiency of CmLDH1 under its optimum conditions was higher than those of L-LDHs of other organisms. ATP decreased the affinity and turnover number of CmLDH1 for NADH. These findings contribute to understanding the characteristics of L-LDHs of microalgae and the regulatory mechanisms of lactic fermentation in C. merolae.


Assuntos
Trifosfato de Adenosina , L-Lactato Desidrogenase , Ácido Pirúvico , Rodófitas , Rodófitas/enzimologia , Rodófitas/genética , Rodófitas/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Ácido Pirúvico/metabolismo , Trifosfato de Adenosina/metabolismo , Fermentação , Sequência de Aminoácidos , Ácido Láctico/metabolismo , Microalgas/metabolismo , Microalgas/genética , Microalgas/enzimologia , Catálise
3.
Int Microbiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980560

RESUMO

This study was conducted to examine the role of the central domain of cyclomaltodextrinase in terms of stability, substrate specificity, becoming dodecameric form, and enzyme activity. To this end, H403R/L309V double-point mutation and T280Q single-point mutation were performed at the central domain and (ß/α)8-barrel. The results indicated that the activity of the H403R/L309V mutant at the optimal pH and temperature increased by about 25% and 40%, respectively. Plus, the irreversible thermal inactivation of the H403R/L309V mutant at 60 °C and 160 min was approximately twice of the enzyme without mutation. Both mutants underwent significant structural change relative to the wild enzyme and subsequently a significant catalytic activity. However, the catalytic efficiency (kcat/Km) of the H403R/L309V mutant increased in the presence of beta- and gamma-cyclomaltodextrin substrates compared to the wild enzyme and T280Q mutant. As a result, by applying the L309V mutant and given the smaller size of the valine, leucine spatial inhibition in the wild protein seems to decline, and also it facilitates the substrate access to active site amino acids. Moreover, as gamma substrate is larger, eliminating the effect of spatial inhibition on this substrate has a greater effect on improving the catalytic activity of this enzyme.

4.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065396

RESUMO

In this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2-pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction's productivity, the PP's mechanical properties, the polymer's fluidity index, and the PP's thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH2 bonds at 430 to 475 cm-1 and 957 to 1037 cm-1, respectively, indicating the interaction between the epoxides and the Ziegler-Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 °C and 600 °C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product's quality and the polymerization process's efficiency.

5.
Protein J ; 43(4): 739-750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824468

RESUMO

Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide and results in the emission of a photon of light. Although Renilla luciferase has various applications in biotechnology, its low thermal stability limits the development of its applications. Arginine is a well-known stabilizing amino acid that plays a key role in protein stabilization against inactivation. However, its impact on enzyme properties is unpredictable. This study investigates the impact of arginine on the kinetics and thermal stability of Renilla luciferase. The enzyme's performance was significantly enhanced in the presence of arginine, with catalytic efficiency increasing by 3.31-fold and 3.08-fold when exposed to 0.2 M and 0.3 M arginine, respectively. Additionally, arginine improved the thermal stability of Renilla luciferase. Molecular dynamics simulation showed that the addition of 0.2 M arginine reduced the binding of coelenteramide, the reaction product and an enzyme inhibitor, to the active site of the Renilla luciferase. Therefore, the release of the product was accelerated, and the affinity of Renilla luciferase for coelenterazine increased. Furthermore, Molecular dynamics studies indicated an increased network of water molecules surrounding Renilla luciferase in the presence of 0.2 M arginine. This network potentially enhances the hydrophobic effect on the protein structure, ultimately improving enzyme stability. The findings of this study hold promise for the development of commercial kits incorporating Renilla luciferase.


Assuntos
Arginina , Estabilidade Enzimática , Imidazóis , Luciferases de Renilla , Simulação de Dinâmica Molecular , Pirazinas , Arginina/química , Arginina/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Cinética , Imidazóis/química , Imidazóis/metabolismo , Luciferases de Renilla/química , Luciferases de Renilla/metabolismo , Luciferases de Renilla/genética , Renilla/enzimologia , Renilla/química , Domínio Catalítico , Animais
6.
J Agric Food Chem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842002

RESUMO

The nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed substitution reaction plays a pivotal role in the biosynthesis of nucleotide compounds. However, industrial applications are hindered by the low activity of NAMPTs. In this study, a novel dual-channel protein engineering strategy was developed to increase NAMPT activity by enhancing substrate accessibility. The best mutant (CpNAMPTY13G+Y15S+F76P) with a remarkable 5-fold increase in enzyme activity was obtained. By utilizing CpNAMPTY13G+Y15S+F76P as a biocatalyst, the accumulation of ß-nicotinamide mononucleotide reached as high as 19.94 g L-1 within 3 h with an impressive substrate conversion rate of 99.8%. Further analysis revealed that the newly generated substrate channel, formed through crack propagation, facilitated substrate binding and enhanced byproduct tolerance. In addition, three NAMPTs from different sources were designed based on the dual-channel protein engineering strategy, and the corresponding dual-channel mutants with improved enzyme activity were obtained, which proved the effectiveness and practicability of the approach.

7.
Curr Res Food Sci ; 8: 100777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840809

RESUMO

The novel ß-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-ß-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.

8.
J Biol Chem ; 300(6): 107343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705395

RESUMO

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Peso Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Especificidade por Substrato , Biodegradação Ambiental , Oxigenases/metabolismo , Oxigenases/química , Oxigenases/genética , Hidroxilação
9.
J Environ Sci (China) ; 144: 137-147, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802225

RESUMO

The pollution and ecological risks posed by arsenic (As) entering the soil are the major environmental challenges faced by human beings. Soil phosphatase can serve as a useful indicator for assessing As contamination under specific soil pH conditions. However, the study of phosphatase kinetics in long-term field As-contaminated soil remains unclear, presenting a significant obstacle to the monitoring and evaluation of As pollution and toxicity. The purpose of this study was to determine phosphatase activity and explore enzyme kinetics in soils subjected to long-term field As contamination. Results revealed that the soil phosphatase activity varied among the tested soil samples, depending on the concentrations of As. The relationship between total As, As fractions and phosphatase activity was found to be significant through negative exponential function fitting. Kinetic parameters, including maximum reaction velocity (Vmax), Michaelis constant (Km) and catalytic efficiency (Vmax/Km), ranged from 3.14 × 10-2-53.88 × 10-2 mmol/(L·hr), 0.61-7.92 mmol/L, and 0.46 × 10-2-11.20 × 10-2 hr-1, respectively. Vmax and Vmax/Km of phosphatase decreased with increasing As pollution, while Km was less affected. Interestingly, Vmax/Km showed a significant negative correlation with all As fractions and total As. The ecological doses (ED10) for the complete inhibition and partial inhibition models ranged from 0.22-70.33 mg/kg and 0.001-55.27 mg/kg, respectively, indicating that Vmax/Km can be used as an index for assessing As pollution in field-contaminated soil. This study demonstrated that the phosphatase kinetics parameters in the soil's pH system were better indicators than the optimal pH for evaluating the field ecotoxicity of As.


Assuntos
Arsênio , Monitoramento Ambiental , Poluentes do Solo , Solo , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Concentração de Íons de Hidrogênio , Monitoramento Ambiental/métodos , Cinética , Monoéster Fosfórico Hidrolases/metabolismo
10.
J Sci Food Agric ; 104(12): 7375-7385, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38666395

RESUMO

BACKGROUND: Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS: The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION: Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.


Assuntos
Bacillus megaterium , Proteínas de Bactérias , Carboxipeptidases , Paladar , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/química , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Cinética , Humanos , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Engenharia de Proteínas , Biocatálise , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Proteínas de Soja/genética , Mutagênese Sítio-Dirigida , Aromatizantes/química , Aromatizantes/metabolismo , Catálise
11.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563232

RESUMO

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Trissacarídeos , Saccharomyces cerevisiae/genética , Difosfato de Uridina , Hidrolases , Glucosídeos , Glicosiltransferases/genética , Glicosídeos , Folhas de Planta
12.
Front Microbiol ; 15: 1385329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659990

RESUMO

Introduction: Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods: The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion: GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.

13.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474583

RESUMO

Tobacco etch virus protease (TEVp) is wildly exploited for various biotechnological applications. These applications take advantage of TEVp's ability to cleave specific substrate sequences to study protein function and interactions. A major limitation of this enzyme is its relatively slow catalytic rate. In this study, MD simulations were conducted on TEV enzymes and known highly active mutants (eTEV and uTEV3) to explore the relationship between mutation, conformation, and catalytic function. The results suggest that mutations distant from the active site can influence the substrate-binding pocket through interaction networks. MD analysis of eTEV demonstrates that, by stabilizing the orientation of the substrate at the catalytic site, mutations that appropriately enlarge the substrate-binding pocket will be beneficial for Kcat, enhancing the catalytic efficiency of the enzyme. On the contrary, mutations in uTEV3 reduced the flexibility of the active pocket and increased the hydrogen bonding between the substrate and enzyme, resulting in higher affinity. At the same time, the MD simulation demonstrates that mutations outside of the active site residues could affect the dynamic movement of the binding pocket by altering residue networks and communication pathways, thereby having a profound impact on reactivity. These findings not only provide a molecular mechanistic explanation for the excellent mutants, but also serve as a guiding framework for rational computational design.


Assuntos
Endopeptidases , Simulação de Dinâmica Molecular , Endopeptidases/metabolismo , Biotecnologia , Mutação
14.
Food Chem ; 446: 138652, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402758

RESUMO

Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.


Assuntos
Glucose , Amido , Amido/química , Zea mays/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Archaea , Especificidade por Substrato
15.
Int J Biol Macromol ; 263(Pt 2): 130367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401588

RESUMO

The control of laccase-catalyzed efficiency often relies on the utilization of modifying enzyme molecules and shielding agents. However, their elevated costs or carcinogenicity led to the inability for large-scale application. To address this concern, we found that a low-cost protein from soybean meal can reduce lignin's ineffective adsorption onto enzymes for improving the efficiency of thymol grafting to lignosulfonate. The results demonstrated that by adding 0.5 mg/mL of additional soybean meal protein, the thymol reaction ratio of the modified lignosulfonate (L-0.5 S) significantly boosted from 18.1 % to 35.0 %, with the minimal inhibitory concentrations of the L-0.5 S against Aspergillus niger dramatically improved from 12.5 mg/mL to 3.1 mg/mL. Multiple characterization methods were employed to better understand the benefit of the modification under the addition of the soybean meal protein. The CO and R1-O group content increased from 20.5 % to 37.8 % and from 65.1 % to 75.5 %, respectively. The proposed potential reaction mechanism was further substantiated by the physicochemical properties. The incorporation of soybean meal effectively mitigated the non-specific adsorption of lignosulfonate, resulting in a reduction of the surface area of lignin from 235.0 to 139.2 m2/g. The utilization of soybean meal as a cost-effective and efficient shielding agent significantly enhanced the efficiency of subsequent enzyme catalysis. Consequently, the application of soybean meal in commercial enzyme catalysis holds considerable appeal and amplifies the relevance of this study in preservative industries.


Assuntos
Lignina , Lignina/análogos & derivados , Proteínas de Soja , Lignina/química , Lacase/metabolismo , Timol , Adsorção , Farinha , Glycine max , Catálise
16.
Biochem Biophys Rep ; 37: 101617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371529

RESUMO

Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide, resulting in the emission of a photon of light. This study investigated the impact of sorbitol on the structural and kinetic properties of Renilla luciferase using circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. Our investigation, carried out using circular dichroism and fluorescence analyses, as well as a thermal stability assay, has revealed that sorbitol induces conformational changes in the enzyme but does not improve its thermal stability. Moreover, through kinetic studies, it has been demonstrated that at a concentration of 0.4 M, sorbitol enhances the catalytic efficiency of Renilla luciferase. However, at higher concentrations, sorbitol results in a decrease in catalytic efficiency. Additionally, molecular dynamics simulations have shown that sorbitol increases the presence of hydrophobic pockets on the enzyme's surface. These simulations have also provided evidence that at a concentration of 0.4 M, sorbitol facilitates substrate access to the active site of the enzyme. Nevertheless, at higher concentrations, sorbitol obstructs substrate trafficking, most likely due to its impact on the gateway to the active site. This study may provide insights into the kinetic changes observed in enzymes with buried active sites, such as those with α/ß hydrolase fold.

17.
Int J Biol Macromol ; 262(Pt 2): 130248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367782

RESUMO

Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position. Enzyme kinetic experiments revealed that the kcat values of NpPAL-N2K, NpPAL-I3T, and NpPAL-T4L mutants were increased to 3.2-, 2.8-, and 3.3-fold that of the wild-type, respectively. Saturation mutagenesis of the fourth amino acid in AvPAL revealed that the kcat values of AvPAL-L4N, AvPAL-L4P, AvPAL-L4Q and AvPAL-L4S increased to 4.0-, 3.7-, 3.6-, and 3.2-fold, respectively. Additionally, the soluble protein yield of AvPAL-L4K increased to approximately 14 mg/L, which is approximately 3.5-fold that of AvPAL. Molecular dynamics studies further revealed that maintaining the attacking state of the reaction and N-terminal structure increased the rate of catalytic reaction and improved the solubility of proteins. These findings provide new insights for the rational design of PAL in the future.


Assuntos
Anabaena variabilis , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Anabaena variabilis/genética , Anabaena variabilis/metabolismo , Sequência de Aminoácidos , Catálise
18.
J Agric Food Chem ; 72(5): 2678-2688, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38273455

RESUMO

Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using ß-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a ß-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.


Assuntos
Xilose , Xilosidases , Xilose/metabolismo , Filogenia , Xilosidases/química , Polissacarídeos/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio , Especificidade por Substrato
19.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203766

RESUMO

Streptomyces rimosus extracellular lipase (SrL) is a multifunctional hydrolase belonging to the SGNH family. Here site-directed mutagenesis (SDM) was used for the first time to investigate the functional significance of the conserved amino acid residues Ser10, Gly54, Asn82, Asn213, and His216 in the active site of SrL. The hydrolytic activity of SrL variants was determined using para-nitrophenyl (pNP) esters with C4, C8, and C16 fatty acid chains. Mutation of Ser10, Asn82, or His216, but not Gly54, to Ala abolished lipase activity for all substrates. In contrast, the Asn213Ala variant showed increased enzymatic activity for C8 and C16 pNP esters. Molecular dynamics (MD) simulations showed that the interactions between the long alkyl chain substrate (C16) and Ser10 and Asn82 were strongest in Asn213Ala SrL. In addition to Asn82, Gly54, and Ser10, several new constituents of the substrate binding site were recognized (Lys28, Ser53, Thr89, and Glu212), as well as strong electrostatic interactions between Lys28 and Glu212. In addition to the H bonds Ser10-His216 and His216-Ser214, Tyr11 interacted strongly with Ser10 and His216 in all complexes with an active enzyme form. A previously unknown strong H bond between the catalytically important Asn82 and Gly54 was uncovered, which stabilizes the substrate in an orientation suitable for the enzyme reaction.


Assuntos
Lipase , Nitrofenóis , Streptomyces rimosus , Lipase/genética , Hidrólise , Ésteres , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade
20.
Bioresour Technol ; 393: 130027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977496

RESUMO

Bioconversion of CO2 to high-valuable products is a globally pursued sustainable technology for carbon neutrality. However, low CO2 activation with formate dehydrogenase (FDH) remains a major challenge for further upcycling due to the poor CO2 affinity, reduction activity and stability of currently used FDHs. Here, we present two recombined mutants, ΔFDHPa48 and ΔFDHPa4814, which exhibit high CO2 reduction activity and antioxidative activity. Compared to FDHPa, the reduction activity of ΔFDHPa48 was increased up to 743 % and the yield in the reduction of CO2 to methanol was increased by 3.16-fold. Molecular dynamics identified that increasing the width of the substrate pocket of ΔFDHPa48 could improve the enzyme reduction activity. Meanwhile, the enhanced rigidity of C-terminal residues effectively protected the active center. These results fundamentally advanced our understanding of the CO2 activation process and efficient FDH for enzymatic CO2 activation and conversion.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , NAD/metabolismo , NADH Desidrogenase , Oxirredução , Formiatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA