Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630313

RESUMO

Typically, the formation of vesicles requires the addition of salts or other additives to surfactant micelles. However, in the case of catanionic surfactants, unilamellar vesicles can spontaneously form upon dilution of the micellar solutions. Our study explores the intriguing spontaneous vesicle-to-micelle transition in catanionic surfactant systems, specifically cetyltrimethyl ammonium bromide (CTAB) and sodium octylsulfonate (SOS). To gain insights into the changes occurring at the interface, we employ a chemical trapping method to characterize variations in the molarities of sulfonate headgroups, water, and bromide ions during the transition. Our findings reveal the formation of ion pairs between the cationic component of CTAB and the anionic component of SOS, leading to tight interfacial packing in CTAB/SOS solutions. This interfacial packing promotes vesicle formation at low surfactant concentrations. Due to the significant difference in critical micelle concentration (cmc) between CTAB and SOS, an increase in the stoichiometric surfactant concentration results in a substantial rise in the SOS-to-CTAB ratio within the interfacial region. This enrichment of SOS in the aggregates triggers the transition from vesicles to micelles. Overall, our study may shed new light on the design of morphologies in catanionic and other surfactant systems.

2.
J Colloid Interface Sci ; 576: 345-355, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450368

RESUMO

HYPOTHESIS: New dynamic phenomena can be observed in evaporating free liquid films from colloidal solutions with bimodal particle size distribution. Such distributions are formed in a natural way in mixed (slightly turbid) solutions of cationic and anionic surfactants, where nanosized micelles coexist with micronsized precipitated particles. EXPERIMENT: Without evaporation of water, the films thin down to thickness < 100 nm. Upon water evaporation from the film, one observes spontaneous film thickening (above 300 nm) and appearance of a dynamic vortex with a spot of thinner film in the center. The vortex wall has a stepwise profile with step-height equal to the effective micelle diameter (ca. 8 nm) and up to 20-30 stratification steps. RESULTS: For thicknesses greater than 100 nm, stratification in foam films from micellar solutions has never been observed so far. It evidences for the formation of a thick colloidal crystal of micelles in the evaporating film. The role of the bigger, micronsized particles is to form a filtration cake in the Plateau border, which supports the thick film. The developed quantitative mechanical model shows that the stepwise vortex profile is stabilized by the balance of hydrodynamic and surface tension forces. Vortex is observed not only in films from catanionic surfactant solutions, but also in films from silica and latex particle suspensions, which contain smaller surfactant micelles.

3.
Mol Pharm ; 15(3): 1361-1370, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436839

RESUMO

Effective and efficient spreading of drug formulations on the pulmonary mucosal layer is key to successful delivery of therapeutics through the lungs. The pulmonary mucus layer, which covers the airway surface, acts as a barrier against therapeutic agents, especially in the case of chronic lung diseases due to increased thickness and viscosity of the mucus. Therefore, spreading of the drug formulations on the airways gets harder. Although spreading experiments have been conducted with different types of formulations on mucus-mimicking subphases, a highly effective formulation is yet to be discovered. Adding surfactant to such formulations decreases the surface tension and triggers the Marangoni forces to enhance the spreading behavior. In this study, catanionic (cationic + anionic) surfactant mixtures composed of dodecyltrimethylammonium bromide (DTAB) and dioctyl sulfosuccinate sodium salt (AOT) mixed at various mole ratios are prepared and their spreading behavior on both mucin and cystic fibrosis (CF) mucus models is investigated for the first time in the literature. Synergistic interaction is obtained between the components of the DTAB/AOT mixtures, and this interaction has enhanced the spreading of the formulation drop on both the mucin and CF mucus models when compared with the spreading performances of selected conventional surfactants. It is proposed that the catanionic surfactant mixtures, especially when mixed at the molar ratios of 8/2 and 7/3 (DTAB/AOT), improve the spreading even on the cystic fibrosis sputum model. As it is vital to transport a sufficient amount of drug to the targeted region for the treatment of diseases, this study presents an important application of the fundamentals of colloidal science to pharmaceutical nanotechnology.


Assuntos
Agonistas dos Canais de Cloreto/administração & dosagem , Fibrose Cística/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Mucosa Respiratória/metabolismo , Tensoativos/química , Animais , Ânions/química , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Cátions/química , Bovinos , Fibrose Cística/patologia , Ácido Dioctil Sulfossuccínico/química , Modelos Animais de Doenças , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Mucinas/metabolismo , Compostos de Amônio Quaternário/química , Escarro/efeitos dos fármacos , Escarro/metabolismo , Tensão Superficial/efeitos dos fármacos , Viscosidade
4.
Chemphyschem ; 16(16): 3433-7, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377841

RESUMO

The self-association properties of anti-HIV catanionic dendrimers as multivalent galactosylceramide (GalCer)-derived inhibitors are presented. The study was designed to elucidate the origin of the relatively high cytotoxicity values of these anti-HIV catanionic dendrimers, which have previously been found to exhibit in vitro anti-HIV activity in the submicromolar range. The physicochemical properties of these catanionic dendrimers were studied to tentatively correlate the structural parameters with self-association and biological properties. We can conclude from this study that the absence of correlation between the hydrophobicity and the cytotoxicity of the catanionic systems could be explained by the partial segregation of the different partners of the catanionic entities.


Assuntos
Fármacos Anti-HIV/química , Dendrímeros/química , Fármacos Anti-HIV/metabolismo , Dendrímeros/síntese química , Dendrímeros/metabolismo , Difusão Dinâmica da Luz , Galactosilceramidas/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Tensoativos/química
5.
Chemphyschem ; 15(14): 3097-109, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25044685

RESUMO

The behavior of water entrapped in reverse micelles (RMs) formed by two catanionic ionic liquid-like surfactants, benzyl-n-hexadecyldimethylammonium 1,4-bis-2-ethylhexylsulfosuccinate (AOT-BHD) and cetyltrimethylammonium 1,4-bis-2-ethylhexylsulfosuccinate (AOT-CTA), was investigated by using dynamic (DLS) and static (SLS) light scattering, FTIR, and (1)H NMR spectroscopy techniques. To the best of our knowledge, this is the first report in which AOT-CTA has been used to create RMs and encapsulate water. DLS and SLS results revealed the formation of RMs in benzene and the interaction of water with the RM interface. From FTIR and (1)H NMR spectroscopy data, a difference in the magnitude of the water-catanionic surfactant interaction at the interface is observed. For the AOT-BHD RMs, a strong water-surfactant interaction can be invoked whereas for AOT-CTA this interaction seems to be weaker. Consequently, more water molecules interact with the interface in AOT-BHD RMs with a completely disrupted hydrogen-bond network, than in AOT-CTA RMs in which the water structure is partially preserved. We suggest that the benzyl group present in the BHD(+) moiety in AOT-BHD is responsible for the behavior of the catanionic interface in comparison with the interface created in AOT-CTA. These results show that a simple change in the cationic component in the catanionic surfactant promotes remarkable changes in the RMs interface with interesting consequences, in particular when using the systems as nanoreactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA