Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.138
Filtrar
1.
J Int Soc Sports Nutr ; 21(1): 2411029, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39350601

RESUMO

BACKGROUND: Green tea (GT) is a common component of supplements known as fat burners. It has gained popularity as an ergogenic aid for weight reduction to assist with obesity management. This systematic review and meta-analysis aim to explore the effect of green tea ingestion coupled with exercise training (EX) on body composition and lipid profile in overweight and obese individuals. METHODS: Two independent researchers systematically searched the electronic databases of PubMed, Web of Science, and Scopus. Studies with a randomized-controlled design to compare the effect of green tea in conjunction with exercise training (EX+GT) versus exercise training alone (EX+P) in overweight or obese participants were included. RESULTS: Of the 1,015 retrieved studies, 24 were identified to undergo full-text review, out of which 10 randomized trials met the inclusion criteria. EX+GT versus EX+P had a small and consistent effect on weight [Standardized mean difference (SMD) = -0.30, CI: -0.53 to -0.07], BMI [SMD = -0.33 CI: -0.64 to -0.02] and fat reduction [SMD = -0.29, CI: -0.57 to -0.01] and there was no evidence of heterogeneity across the trials. When compared to EX+P, EX+GT had no greater effect on lipid profile improvement [triglyceride: SMD = -0.92, CI: -1.30 to 0.49; LDL: SMD = -1.44, CI: -0.73 to 0.82; HDL: SMD = 0.56, CI -0.71 to 0.46; and total cholesterol SMD = -0.54, CI -0.85 to 0.13]. CONCLUSIONS: Current evidence suggests that green tea could have quite minimal additive benefit over exercise-induced weight loss. However, incorporation of green tea into exercise training does not seem to exert additional benefits on lipid profile and it warrants further investigations in the future.


Assuntos
Catequina , Obesidade , Sobrepeso , Ensaios Clínicos Controlados Aleatórios como Assunto , Chá , Redução de Peso , Humanos , Obesidade/terapia , Catequina/administração & dosagem , Catequina/farmacologia , Sobrepeso/terapia , Composição Corporal , Exercício Físico/fisiologia , Lipídeos/sangue
2.
Nutrients ; 16(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275155

RESUMO

The liver is a highly metabolically active organ, and one of the causes of its dysfunction is the damage caused by drugs and their metabolites as well as dietary supplements and herbal preparations. A common feature of such damage is drugs, which allows it to be defined as drug-induced liver injury (DILI). In this review, we analysed available research findings in the global literature regarding the effects of green tea and/or its phenolic compounds on liver function in the context of protective action during prolonged exposure to xenobiotics. We focused on the direct detoxifying action of epigallocatechin gallate (EGCG) in the liver, the impact of EGCG on gut microbiota, and the influence of microbiota on liver health. We used 127 scientific research publications published between 2014 and 2024. Improving the effectiveness of DILI detection is essential to enhance the safety of patients at risk of liver damage and to develop methods for assessing the potential hepatotoxicity of a drug during the research phase. Often, drugs cannot be eliminated, but appropriate nutrition can strengthen the body and liver, which may mitigate adverse changes resulting from DILI. Polyphenols are promising owing to their strong antioxidant and anti-inflammatory properties as well as their prebiotic effects. Notably, EGCG is found in green tea. The results of the studies presented by various authors are very promising, although not without uncertainties. Therefore, future research should focus on elucidating the therapeutic and preventive mechanisms of polyphenols in the context of liver health through the functioning of gut microbiota affecting overall health, with particular emphasis on epigenetic pathways.


Assuntos
Catequina , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Chá , Humanos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Catequina/análogos & derivados , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antioxidantes , Polifenóis/farmacologia , Animais
3.
Food Res Int ; 195: 114868, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277212

RESUMO

The taste profile of oolong tea is intricately shaped by origins and roasting. Herein, a comprehensive approach integrating non-targeted metabolomics, quantitative analysis and sensory evaluations was employed to analyze the taste profile of oolong tea. 25 selected representative oolong teas, including Southern Fujian (MN), Northern Fujian (MB), and Taiwan (TW), were meticulously were classified into SX-RG-DD, GS, and TGY based on the chemical taste phenotypes. A total of 314 non-volatile compounds were identified, among which 87 and 77 compounds, including catechin, theaflavins, flavonoids and amino acids were screened as critical taste metabolites responsible for regions and roasting degree, respectively. The reduction of bitter and astringent, coupled with the enhancement of umami, sweet and sweet aftertaste exhibited a correlation with the decrease in (-)-epigallocatechin (EGC), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG), while the increase in catechin (C). These findings provide insights for further research on optimizing tea quality and refining processing techniques.


Assuntos
Biflavonoides , Camellia sinensis , Catequina , Metabolômica , Paladar , Chá , Chá/química , Metabolômica/métodos , Catequina/análise , Catequina/análogos & derivados , Humanos , Biflavonoides/análise , Camellia sinensis/química , Masculino , Flavonoides/análise , Aromatizantes/análise , Feminino , Aminoácidos/análise , Adulto , China
4.
Food Chem ; 463(Pt 1): 141085, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243619

RESUMO

The influence of oxygen on the thermal treatment (TT) of secondary metabolite-enriched extracts (SMEEs) from Tórtola beans and procyanidin C1 (PC1) on the inhibition of advanced glycation end products (AGEs) generation in proteins was investigated. SMEE was incubated at 4 °C (control) or thermally treated at 60 °C for 2 h, at either 0 % O2 (I) or 20 % O2 (II). Treatments I and II increased the content of procyanidin dimers B2. Treatment II was more effective than the control or treatment I in preventing homocysteine oxidation and AGEs generation. TT of PC1 at 0 % or 20 % O2 generated procyanidin dimers and tetramers. PC1 TT at 20 % O2 exhibited higher oxidation potentials and lower IC50 values of fluorescent AGEs than those of controls or TT at 0 % O2. These findings indicate that SMEE from Tórtola beans after treatment II changes the degree of polymerization and oxidation procyanidins, thereby increasing their antiglycation activity.

5.
Heliyon ; 10(16): e36479, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253176

RESUMO

Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.

6.
Front Pharmacol ; 15: 1450211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263574

RESUMO

Pyroptosis induced by oxidative stress is a significant contributor to mental health disorders, including depression (+)-Catechin (CA), a polyphenolic compound prevalent in various food sources, has been substantiated by prior research to exhibit potent antioxidant properties and potential antidepressant effects. Nonetheless, the precise antidepressive mechanisms and effects of CA remain incompletely elucidated. In this study, we employed corticosterone (CORT) and PC12 cells to develop a cellular model of depression, aiming to investigate the protective effects of CA against CORT-induced cellular damage. Our objective was to elucidate the underlying mechanisms of protective action. We utilized transcriptomic analysis to identify differentially expressed genes and employed bioinformatics approaches to predict the potential mechanisms of CA's protective effects in PC12 cells. These transcriptomic predictions were subsequently validated through western blot analysis. The findings indicated that CA possesses the capacity to mitigate oxidative stress and suppress pyroptosis in PC12 cells via the activation of the PI3K/AKT signaling pathway. This activation subsequently modulates the Nrf2/HO1/NF-κB pathways, thereby providing protection to PC12 cells against damage induced by CORT. Furthermore, we investigated the interaction between CA and the Keap1 protein employing molecular docking and protein thermal shift assays. We propose that CA can activate Nrf2 through two mechanisms to decrease reactive oxygen species (ROS) levels and inhibit pyroptosis: one mechanism involves the activation of the PI3K/AKT signaling pathway, and the other involves direct binding to Keap1, leading to an increase in p-Nrf2.

7.
Food Chem ; 463(Pt 2): 141312, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39305668

RESUMO

In this work, new sorbents for the purification of anthocyanin-rich extracts were evaluated. Copolymers of 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB)) were tested for their potential to capture polyphenols. Copolymers were obtained by seed swelling polymerization in the form of microspheres with permanent porous structure - attractive features of sorbents used for sample purification by dispersive solid phase extraction. The microspheres were characterized by AFM, elemental analysis, SEM, and nitrogen adsorption-desorption method. Their capacity to remove polyphenols was evaluated using spectrophotometry, HPLC-DAD, and LC-MS/MS. For proof-of-concept, the aqueous extracts of berries classified into three different groups regarding their anthocyanin composition (strawberries, raspberries, blackcurrants) were selected. It was found that studied microspheres adsorbed flavonoids more effectively compared to primary secondary amine and graphitized carbon black. Copolymers of 4-vinylpyridine also capture anthocyanins and might be used for the purification of extracts of fruits before LC-MS/MS analysis to reduce the matrix effect.

8.
Pestic Biochem Physiol ; 204: 106063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277379

RESUMO

Lindane (LDN) is a well-known herbicidal drug that exerts deleterious impacts on vital body organs including the liver. Catechin (CTN) is a plant-based flavonoid that demonstrates various pharmacological abilities. This trial was executed to evaluate the ameliorative efficacy of CTN to combat LDN instigated hepatotoxicity in male albino rats (Rattus norvegicus). Thirty-two rats were categorized into four groups including control, LDN (30 mg/kg), LDN (30 mg/kg) + CTN (40 mg/kg) and CTN (40 mg/kg) alone treated group. It was observed that LDN dysregulated the expressions of PI3K/PIP3/Akt and Nrf-2/Keap-1 pathway. Moreover, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme­oxygenase-1 (HO-1) and glutathione reductase (GSR) were subsided after LDN intoxication. Besides, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), ALT (Alanine aminotransferase), AST (Aspartate transaminase), Gamma-glutamyl transferase (GGT) and ALP (Alkaline phosphatase) were increased whereas reduced the levels of albumin and total proteins in response to LDN exposure. Additionally, LDN administration escalated the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, the gene expressions of Bcl-2-associated X protein (Bax) and Cysteinyl aspartate-acid proteases-3 (Caspase-3) were enhanced whereas the expression of B-cell lymphoma-2 (Bcl-2) was lowered following the LDN treatment. LDN instigated various histological impairments in hepatic tissues. Nonetheless, concurrent administration of CTN remarkably ameliorated liver impairments via regulating aforementioned disruptions owing to its antioxidant, anti-apoptotic and histo-protective potentials.


Assuntos
Catequina , Hexaclorocicloexano , Fígado , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Catequina/farmacologia , Hexaclorocicloexano/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Herbicidas/toxicidade
9.
Curr Res Food Sci ; 9: 100852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319111

RESUMO

The growing interest in healthy diets has driven the demand for food ingredients with enhanced health benefits. In this study, we aimed to explore a method to enhance the bioactivity of kale using a home vertical farming appliance. Specifically, we investigated the effects of treating kale with a green tea water extract (GTE; 0.1-0.5 g/L in nutrient solution) for two weeks before harvest during five weeks of kale cultivation. GTE treatment did not negatively affect the key quality attributes, such as yield, semblance, or sensory properties. However, it led to the accumulation of bioactive compounds, epicatechin (EC) and epigallocatechin gallate (EGCG), which are typically absent in kale. In the control group, no catechins were detected, whereas in the GTE-treated group, the concentration of EC and EGCG were as high as 252.11 and 173.26 µg/g, respectively. These findings indicate the successful incorporation of catechins, known for their unique health-promoting properties, into kale. Additionally, GTE treatment enhanced the biosynthesis of glucosinolates, which are key secondary metabolites of kale. The total glucosinolate content increased from 9.56 µmol/g in the control group to 16.81 µmol/g in the GTE-treated group (treated with 0.5 g/L GTE). These findings showed that GTE treatment not only enriched kale with catechins, the primary bioactive compounds in green tea but also increased the levels of glucosinolates. This study, conducted using a home vertical farming appliance, suggests that bioactivity-enhanced kale can be grown domestically, providing consumers with a nutrient-fortified food source.

10.
Foods ; 13(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39335872

RESUMO

Basella alba has been used in Thai remedies to treat skin disorders, but scientific evidence supporting its efficacy is currently limited. In this study, we investigated the inhibitory effects of B. alba extracts on melanin production using melanoma cells, as well as their impact on oxidative stress and inflammation in keratinocytes. The results demonstrate that B. alba extracts inhibited melanin content and cellular tyrosinase activity in 3-isobutyl-1-methylxanthine (IBMX)-induced melanoma cells by downregulating MITF and the pigmentary genes TYR, TRP-1, and DCT. Interestingly, the MITF regulator gene was inhibited by both the 50% and 95% ethanolic extracts of B. alba with levels of 0.97 ± 0.19 and 0.92 ± 0.09 of the control, respectively, which are comparable to those observed in the arbutin treatment group at 0.84 ± 0.05 of the control. Moreover, after hydrogen peroxide (H2O2) exposure, pretreatment with B. alba reduced lipid peroxidation byproducts and increased the levels of antioxidant-related genes, including SOD-1, GPX-1, and NRF2. Notably, the suppression of the POMC promoter gene in keratinocytes was observed, which may disrupt melanogenesis in melanocytes involving the MC1R signaling pathway. MC1R mRNA expression decreased in the treatments with 50% and 95% ethanolic extracts of B. alba, with relative levels of 0.97 ± 0.18 and 0.90 ± 0.10 of the control, respectively, similar to the arbutin-treated group (0.88 ± 0.25 of control). A significant reduction in nitric oxide was also observed in the B. alba-treated groups, along with a decrease in genes associated with pro-inflammatory cytokines, including IL-1ß, IL-6, and COX-2. These findings suggest that B. alba has potential in the prevention of skin-related problems.

11.
Molecules ; 29(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339462

RESUMO

Catechin is one of the representative antioxidants that shows physiological activities such as an anti-cancer effect. We have developed a chemically modified catechin analog possessing a planar structure, which shows an enhanced radical-scavenging activity as well as inhibitory effects on the proliferation and migration of cancer cells, compared to the parent (+)-catechin. In this study, the mechanism for cancer cell inhibition by the planar catechin was partly elucidated using a gastric cancer cell line. The planar catechin treatment induced an enhanced expression of an apoptotic marker, cleaved caspase-3, in addition to the mitigation of the intracellular accumulation of reactive oxygen species (ROS) and NF-κB expression. Furthermore, γH2AX, a marker of double-strand breaks in DNA, was also induced by the planar catechin treatment in a dose-dependent manner. These findings suggest that the removal of ROS by the planar catechin with a higher antioxidant ability executed NF-κB suppression and/or the planar catechin-injured DNA, leading to the induction of apoptosis in cancer cells.


Assuntos
Apoptose , Catequina , NF-kappa B , Espécies Reativas de Oxigênio , Humanos , Catequina/farmacologia , Catequina/análogos & derivados , Catequina/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Caspase 3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
12.
Int J Biol Macromol ; 280(Pt 3): 135885, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307507

RESUMO

This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ± 0.42 mPas, and conductivity of 0.162 µS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher Cmax of NFV (9.75 ± 1.23 µg/mL) and EGCG (27.7 ± 1.22 µg/mL) in the brain, along with NFV (26.44 ± 1.44 µg/mL) and EGCG (313.20 ± 5.53 µg/mL) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.

13.
Pathogens ; 13(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204299

RESUMO

The green tea catechin epigallocatechin gallate (EGCg) has antimicrobial effects on many bacteria. In this study, we investigated the inhibitory effects of EGCg on Bacillus anthracis spores and vegetative cells. The B. anthracis spores were insensitive to EGCg, but the growth of vegetative cells derived from germinated spores was inhibited by EGCg. Moreover, EGCg decreased the minimum inhibitory concentration of penicillin and meropenem for penicillin-resistant B. anthracis. In the penicillin-resistant B. anthracis strain, the transcription levels of the beta-lactamase genes (bla1 and bla2) decreased significantly following the treatment with 50 µg/mL EGCg. These results suggest that the appropriate application of EGCg may effectively control the penicillin-resistant B. anthracis growth and beta-lactamase production.

14.
Mol Nutr Food Res ; : e2400387, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121356

RESUMO

SCOPE: Diabetic nephropathy (DN), a complication of diabetes mellitus, is becoming a significant global health concern, with no complete cure currently available. Tea is regarded as an essential component of a balanced diet and contains (+)-Catechin (CE), which exert a range of pharmacological effects. Consequently, CE may be a potential treatment for DN. The objective of this study is to examine the protective effects and underlying mechanisms of CE on DN, with a particular focus on the epithelial-mesenchymal transition (EMT) process, which plays a pivotal role in regulating DN. METHODS AND RESULTS: In this study db/db mice are treated with catechins. The results demonstrate that CE reduces obesity and hyperglycemia, improves renal dysfunction and morphological changes in diabetic mice, and inhibits the development of DN through the RAGE/NF-κB signaling pathway. Among them differentially expressed messenger RNA (mRNA) results, those related to EMT, including Cav1, grem2, macrod2, and kap, are identified. To further validate the results, the same experiments are performed on HK-2 cells. CONCLUSIONS: The research results offer novel perspectives by emphasizing the anti-inflammatory properties of CE and their potential role in mitigating DN through the regulation of EMT-related genes such as RAGE, Cav1, grem2, macrod2, and kap.

15.
Arch Oral Biol ; 167: 106063, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39128436

RESUMO

OBJECTIVE: Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS: Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION: EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.


Assuntos
Catequina , Fusobacterium nucleatum , Doenças Periodontais , Porphyromonas gingivalis , Prevotella intermedia , Streptococcus mutans , Chá , Catequina/farmacologia , Catequina/análogos & derivados , Chá/química , Streptococcus mutans/efeitos dos fármacos , Doenças Periodontais/microbiologia , Doenças Periodontais/tratamento farmacológico , Porphyromonas gingivalis/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Prevotella intermedia/efeitos dos fármacos , Fusobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Prevotella nigrescens/efeitos dos fármacos , Humanos
16.
Curr Issues Mol Biol ; 46(8): 8320-8339, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194708

RESUMO

Muscle atrophy is known to be one of the symptoms leading to sarcopenia, which significantly impacts the quality of life, mortality, and morbidity. Therefore, the development of therapeutics for muscle atrophy is essential. This study focuses on addressing muscle loss and atrophy using Ulmus macrocarpa extract and its marker compound, catechin 7-O-ß-D-apiofuranoside, by investigating their effects on biomarkers associated with muscle cell apoptosis. Additionally, protein and gene expression in a muscle atrophy model were examined using Western blotting and RT-PCR. Ulmus macrocarpa has been used as food or medicine due to its safety, including its roots, barks, and fruit. Catechin 7-O-ß-D apiofuranoside is an indicator substance of plants of the Ulmus genus and has been reported to have various effects such as antioxidant and anti-inflammatory effects. The experimental results demonstrated that catechin glycoside and Ulmus macrocarpa extract decreased the expression of the muscle-degradation-related proteins Atrogin-1 and Muscle RING-Finger protein-1 (MuRF1) while increasing the expression of the muscle-synthesis-related proteins Myoblast determination (MyoD) and Myogenin. Gene expression confirmation experiments validated a decrease in the expression of Atrogin and MuRF1 mRNA and an increase in the expression of MyoD and Myogenin mRNA. Furthermore, an examination of muscle protein expression associated with the protein kinase B (Akt)/forkhead box O (FoxO) signaling pathway confirmed a decrease in the expression of FoxO, a regulator of muscle protein degradation. These results confirm the potential of Ulmus macrocarpa extract to inhibit muscle apoptosis, prevent muscle decomposition, and promote the development of functional materials for muscle synthesis, health-functional foods, and natural-product-derived medicines.

17.
J Neurosci Res ; 102(8): e25372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086264

RESUMO

The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1ß. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.


Assuntos
Antioxidantes , Catequina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Transdução de Sinais , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Catequina/farmacologia , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos
18.
Plant Physiol Biochem ; 215: 109023, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39146914

RESUMO

The introduction of arsenic, a hazardous metalloid, into the soil system due to heavy industrialization has negatively affected agricultural productivity, resulting in limited crop yields. A recent breakthrough in stress-responsive hormones, specifically brassinosteroids, has extensively covered the role of antioxidant enzyme defense systems in heavy metal stress mitigation. Considering the antioxidant properties and metal complex formation abilities of polyphenols, our study focuses on examining their role in arsenate toxicity amelioration by 24-epibrassinolide. We demonstrate enhanced growth parameters of sodium arsenate-stressed seedlings upon application of 24-epibrassinolide, with increased root and shoot polyphenol levels analyzed by high-performance liquid chromatography. Specifically, the concentration of catechin, sinapic acid, 4-hydroxy benzoic acid, protocatechuic acid, 4-coumaric acid, and myricetin were elevated, indicating induction of phenylpropanoid signaling pathway. Further, we also report a decrease in the generation of superoxide anions and hydrogen peroxide validated the antioxidant effects of these metabolites through the nitrobluetetrazolium and diaminobenzidine staining method. In addition, evaluation of transcript level of genes encoding for specific enzymes of the phenylpropanoid pathway in shoot and root showed a significant upregulation in mRNA expression of phenylalanine ammonia-lyase-1, cinnamate-4-hydroxylase, and caffeic acid o-methyltransferase-1 upon exogenous application of 24-epibrassinolide in arsenate stressed Oryza sativa.


Assuntos
Arseniatos , Brassinosteroides , Oryza , Plântula , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Esteroides Heterocíclicos/farmacologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Arseniatos/toxicidade , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polifenóis/metabolismo
19.
Front Pharmacol ; 15: 1403900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135797

RESUMO

Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of Mycobacterium tuberculosis (Mtb). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment. Among 239 compounds, the top three (rutin, sesamin, and catechin gallate) were selected, with binding energy values ranging from -11 to -10.3 kcal/mol, and the selected complexes showed RMSD (<3 Å) for 100 ns MD simulation time. Furthermore, molecular mechanics generalized Born surface area (MM/GBSA) binding free energy calculations affirmed the stability of these three selected phytochemicals with binding energy ranges from -82.24 ± 9.35 to -66.83 ± 4.5 kcal/mol. Hence, these identified natural plant-derived compounds as potential inhibitors of pantothenate synthetase could be used to inhibit TB infection in humans.

20.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999703

RESUMO

The leaves and branches of rabbiteye blueberry are rich in proanthocyanidins, which are thought to have different physiological activities depending on their structure and degree of polymerization. In this study, we analyzed the constituents of the leaves and branches of rabbiteye blueberry to determine the seasonal variations in polyphenol and proanthocyanidin (PAC) contents as well as their mean degrees of polymerization (mDP). Total PAC content was determined using two methods: The p-dimethylaminocinnamaldehyde (DMACA) method, which measures monomeric PAC, showed an increase from spring to summer in both leaves and branches. On the other hand, using the butanol/HCl method, which measures only polymerized PAC, the PAC content of leaves increased from spring to summer but those of branches remained low throughout the year, showing no significant increase or decrease. Furthermore, analysis of the mDP of PAC showed increases from spring to summer in the leaves of 'Kunisato 35 gou'. Although the highest value (8.0) was observed in October, values around 4 remained throughout the year in the branches. Since differences in polymerization degree affect absorption in the body and physiological properties such as antioxidant capacity, selecting the appropriate harvest time and plant organs for each purpose is expected to ensure the quality of processed blueberry foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA