Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Adv Sci (Weinh) ; : e2400918, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136147

RESUMO

Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations.

2.
J Transl Med ; 22(1): 787, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180052

RESUMO

BACKGROUND: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins. The expression of non-functional Sil1 leads to the accumulation of unfolded proteins in the ER and this triggers the unfolded protein response (UPR). A dysfunctional UPR could be a key element in the pathogenesis of MSS, although our knowledge of the molecular pathology of MSS is still incomplete. METHODS: RNA-Seq transcriptomics was analysed using the String database and the Ingenuity Pathway Analysis platform. Fluorescence confocal microscopy was used to study the remodelling of the extracellular matrix (ECM). Transmission electron microscopy (TEM) was used to reveal the morphology of the ECM in vitro and in mouse tendon. RESULTS: Our transcriptomic analysis, performed on patient-derived fibroblasts, revealed 664 differentially expressed (DE) transcripts. Enrichment analysis of DE genes confirmed that the patient fibroblasts have a membrane trafficking issue. Furthermore, this analysis indicated that the extracellular space/ECM and the cell adhesion machinery, which together account for around 300 transcripts, could be affected in MSS. Functional assays showed that patient fibroblasts have a reduced capacity of ECM remodelling, reduced motility, and slower spreading during adhesion to Petri dishes. TEM micrographs of negative-stained ECM samples from these fibroblasts show differences of filaments in terms of morphology and size. Finally, structural analysis of the myotendinous junction of the soleus muscle and surrounding regions of the Achilles tendon revealed a disorganization of collagen fibres in the mouse model of MSS (woozy). CONCLUSIONS: ECM alterations can affect the proper functioning of several organs, including those damaged in MSS such as the central nervous system, skeletal muscle, bone and lens. On this basis, we propose that aberrant ECM is a key pathological feature of MSS and may help explain most of its clinical manifestations.


Assuntos
Matriz Extracelular , Fibroblastos , Degenerações Espinocerebelares , Tendões , Fibroblastos/metabolismo , Fibroblastos/patologia , Matriz Extracelular/metabolismo , Humanos , Animais , Tendões/patologia , Tendões/metabolismo , Degenerações Espinocerebelares/patologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/metabolismo , Resposta a Proteínas não Dobradas , Camundongos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Perfilação da Expressão Gênica
3.
Methods Mol Biol ; 2828: 107-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147974

RESUMO

Living cells have the ability to detect electric fields and respond to them with directed migratory movements. Many proteomic approaches have been adopted in the past to identify the molecular mechanism behind this cellular phenomenon. However, how the cells sense the electric stimulus and transduce it into directed cell migration is still under discussion. Many eukaryotic cells react to applied electric stimulation, including Dictyostelium discoideum cells. We use them as model system for studying cell migration in electric fields, also known as electrotaxis. Here we report the protocols that we developed for our experiments. Our experimental outcomes helped us to characterize: (i) the memory that cells have in a varying electric field, which we defined as temporal electric persistence; and (ii) the accelerating motion of cells along their paths over the electric exposure time. We also report on the analysis of the role that conditioned medium factor (CMF), a protein secreted by cells when they begin to starve, plays in the mechanism of electric sensing. The results of this study can contribute to the understanding of the electrical sensing of cells and its transduction into directed cell migration.


Assuntos
Movimento Celular , Dictyostelium , Dictyostelium/fisiologia , Dictyostelium/metabolismo , Dictyostelium/citologia , Eletricidade , Estimulação Elétrica , Resposta Táctica/fisiologia , Meios de Cultivo Condicionados
4.
Proc Natl Acad Sci U S A ; 121(30): e2410708121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39028692

RESUMO

Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns. Our analytical solutions and numerical simulations show that straight motion without rotation is unstable for simple shapes and that straight cell shapes tend to lead to pure rotations. This suggests that the curved shapes of Plasmodium sporozoites and Toxoplasma tachyzoites are evolutionary adaptations to avoid rotations without translation. Gliding motility is also used by certain myxo- or flavobacteria, which predominantly move on flat external surfaces and with higher control of cell surface flow through internal tracks. We extend our theory for these cases. We again find a competition between rotation and translation and predict the effect of internal track geometry on overall forward speed. While specific mechanisms might vary across species, in general, our geometrical theory predicts and explains the rotational, circular, and helical trajectories which are commonly observed for microgliders. Our theory could also be used to design synthetic microgliders.


Assuntos
Forma Celular , Modelos Biológicos , Forma Celular/fisiologia , Movimento Celular/fisiologia , Toxoplasma/fisiologia , Plasmodium/fisiologia
5.
Biochem Soc Trans ; 52(4): 1947-1956, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39051125

RESUMO

The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.


Assuntos
Movimento Celular , Células Epiteliais , Proteínas Serina-Treonina Quinases , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Proteína rhoA de Ligação ao GTP , Humanos , Células Epiteliais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Quinases Associadas a rho/metabolismo , Caderinas/metabolismo
6.
J Biol Phys ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031299

RESUMO

Collective cell invasion underlies several biological processes such as wound healing, embryonic development, and cancerous invasion. Here, we investigate the impact of cell motility on invasion in epithelial monolayers and its coupling to cellular mechanical properties, such as cell-cell adhesion and cortex contractility. We develop a two-dimensional computational model for cells with active motility based on the cellular Potts model, which predicts that the cellular invasion speed is mainly determined by active cell motility and is independent of the biological and mechanical properties of the cells. We also find that, in general, motile cells out-compete and invade non-motile cells, however, this can be reversed by differential cell proliferation. Stable coexistence of motile and static cell types is also possible for certain parameter regimes.

7.
Biomolecules ; 14(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062545

RESUMO

Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.


Assuntos
Movimento Celular , AMP Cíclico , Dictyostelium , Transdução de Sinais , Dictyostelium/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/genética , Dictyostelium/citologia , AMP Cíclico/metabolismo , Quimiotaxia , Comunicação Celular , Íons/metabolismo , Diferenciação Celular , Sinalização do Cálcio
8.
Trends Cell Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969554

RESUMO

Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.

9.
Sci Rep ; 14(1): 16864, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043845

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as important players in cancer progression. Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. The prognosis of the metastatic cSCC is poor, and currently there are no established biomarkers to predict metastasis risk or specific therapeutic targets for advanced or metastatic cSCC. To elucidate the role of lncRNAs in cSCC, RNA sequencing of patient derived cSCC cell lines and normal human epidermal keratinocytes was performed. The correlation analysis of differentially expressed lncRNAs and protein-coding genes revealed six distinct gene clusters with one of the upregulated clusters featuring genes associated with cell motility. Upregulation of the expression of lncRNAs linked to cSCC cell motility in cSCC and head and neck SCC (HNSCC) cells was confirmed using qRT-PCR. Elevated expression of HOTTIP and LINC00543 was also noted in SCC tumors in vivo and was associated with poorer prognosis in HNSCC and lung SCC cohorts within TCGA data, respectively. Altogether, these findings uncover a novel set of lncRNAs implicated in cSCC cell locomotion. These lncRNAs may serve as potential novel biomarkers and as putative therapeutic targets for locally advanced and metastatic cSCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Movimento Celular/genética , Perfilação da Expressão Gênica
10.
J Biotechnol ; 392: 48-58, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906221

RESUMO

Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.


Assuntos
Adesão Celular , Movimento Celular , Guaiacol , Melanoma Experimental , Nanopartículas , Animais , Movimento Celular/efeitos dos fármacos , Nanopartículas/química , Camundongos , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Guaiacol/química , Linhagem Celular Tumoral , Adesão Celular/efeitos dos fármacos , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Paxilina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
11.
In Vivo ; 38(4): 1571-1578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936915

RESUMO

BACKGROUND/AIM: Cold physical plasma (CPP) has emerged as an effective therapy in oncology by inducing cytotoxic effects in various cancer cells, including chondrosarcoma (CS), Ewing's sarcoma (ES), and osteosarcoma (OS). The current study investigated the impact of CPP on cell motility in CS (CAL-78), ES (A673), and OS (U2-OS) cell lines, focusing on the actin cytoskeleton. MATERIALS AND METHODS: The CASY Cell Counter and Analyzer was used to study cell proliferation and determine the optimal concentrations of fetal calf serum to maintain viability without stimulation of cell proliferation. CellTiter-BlueCell viability assay was used to determine the effects of CPP on the viability of bone sarcoma cells. The Radius assay was used to determine cell migration. Staining for Deoxyribonuclease I, G-actin, and F-actin was used to assay for the effects on the cytoskeleton. RESULTS: Reductions in cell viability and motility were observed across all cell lines following CPP treatment. CPP induced changes in the actin cytoskeleton, leading to decreased cell motility. CONCLUSION: CPP effectively reduces the motility of bone sarcoma cells by altering the actin cytoskeleton. These findings underscore CPP's potential as a therapeutic tool for bone sarcomas and highlight the need for further research in this area.


Assuntos
Citoesqueleto de Actina , Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Citoesqueleto , Gases em Plasma , Humanos , Movimento Celular/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Actinas/metabolismo , Sarcoma/patologia , Sarcoma/metabolismo
12.
Front Immunol ; 15: 1338218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742109

RESUMO

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Assuntos
Movimento Celular , Receptor de Morte Celular Programada 1 , Infecções por Retroviridae , Linfócitos T Citotóxicos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/genética , Sistemas CRISPR-Cas , Citotoxicidade Imunológica , Vírus da Leucemia Murina de Friend/imunologia , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Infecções por Retroviridae/imunologia , Linfócitos T Citotóxicos/imunologia
13.
J Biol Chem ; 300(6): 107409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796063

RESUMO

About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Movimento Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células/efeitos dos fármacos , Telomerase/genética , Telomerase/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Pirimidinonas/farmacologia , Piridonas/farmacologia , Mutação de Sentido Incorreto , Linhagem Celular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Butadienos/farmacologia , Substituição de Aminoácidos , Mutação
14.
Proc Natl Acad Sci U S A ; 121(22): e2318248121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787878

RESUMO

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.


Assuntos
Movimento Celular , Matriz Extracelular , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Humanos , Polaridade Celular/fisiologia , Modelos Biológicos , Animais , Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia
15.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725858

RESUMO

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Assuntos
Movimento Celular , Neoplasias do Colo , Proteína-Tirosina Quinases de Adesão Focal , Canais Iônicos , Proteínas dos Microfilamentos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Transdução de Sinais
16.
ACS Appl Bio Mater ; 7(5): 2887-2898, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632900

RESUMO

Collagen is a major component of the tissue matrix, and soybean can regulate the tissue immune response. Both materials have been used to fabricate biomaterials for tissue repair. In this study, adult and fetal human astrocytes were grown in a soy protein isolate (SPI)-collagen hybrid gel or on the surface of a cross-linked SPI-collagen membrane. Hybrid materials reduced the cell proliferation rate compared to materials generated by collagen alone. However, the hybrid materials did not significantly change the cell motility compared to the control collagen material. RNA-sequencing (RNA-Seq) analysis showed downregulated genes in the cell cycle pathway, including CCNA2, CCNB1, CCNB2, CCND1, CCND2, and CDK1, which may explain lower cell proliferation in the hybrid material. This study also revealed the downregulation of genes encoding extracellular matrix (ECM) components, including HSPG2, LUM, SDC2, COL4A1, COL4A5, COL4A6, and FN1, as well as genes encoding chemokines, including CCL2, CXCL1, CXCL2, CX3CL1, CXCL3, and LIF, for adult human astrocytes grown on the hybrid membrane compared with those grown on the control collagen membrane. The study explored the cellular and transcriptional responses of human astrocytes to the hybrid material and indicated a potential beneficial function of the material in the application of neural repair.


Assuntos
Astrócitos , Materiais Biocompatíveis , Proliferação de Células , Humanos , Astrócitos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Teste de Materiais , Colágeno/química , Tamanho da Partícula , Células Cultivadas , Movimento Celular/efeitos dos fármacos
17.
Hematology ; 29(1): 2330285, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511641

RESUMO

We aimed to investigate the role and mechanism of LSP1 in the progression of acute myelogenous leukemia. In this study, we established shLSP1 cell line to analyze the function of LSP1 in AML. We observed high expression of LSP1 in AML patients, whereas it showed no expression in normal adults. Furthermore, we found that LSP1 expression was associated with disease prognosis. Our results indicate that LSP1 plays a crucial role in mediating proliferation and survival of leukemia cells through the KSR/ERK signaling pathway. Additionally, LSP1 promotes cell chemotaxis and homing by enhancing cell adhesion and migration. We also discovered that LSP1 confers chemotactic ability to leukemia cells in vivo. Finally, our study identified 12 genes related to LSP1 in AML, which indicated poor survival outcome in AML patients and were enriched in Ras and cell adhesion signaling pathways. Our results revealed that the overexpression of LSP1 is related to the activation of the KSR/ERK signaling pathway, as well as cell adhesion and migration in AML patients. Reducing LSP1 expression impair AML progression, suggesting that LSP1 may serve as a potential drug therapy target for more effective treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Transdução de Sinais , Adulto , Humanos , Movimento Celular , Linhagem Celular , Leucemia Mieloide Aguda/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
18.
Reprod Biol Endocrinol ; 22(1): 28, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448984

RESUMO

BACKGROUND: One of the causes of male infertility is associated with altered spermatozoa motility. These sperm features are frequently analyzed by image-based approaches, which, despite allowing the acquisition of crucial parameters to assess sperm motility, they are unable to provide details regarding the flagellar beating forces, which have been neglected until now. RESULTS: In this work we exploit Fluidic Force Microscopy to investigate and quantify the forces associated with the flagellar beating frequencies of human spermatozoa. The analysis is performed on two groups divided according to the progressive motility of semen samples, as identified by standard clinical protocols. In the first group, 100% of the spermatozoa swim linearly (100% progressive motility), while, in the other, spermatozoa show both linear and circular motility (identified as 80 - 20% progressive motility). Significant differences in flagellar beating forces between spermatozoa from semen sample with different progressive motility are observed. Particularly, linear motile spermatozoa exhibit forces higher than those with a circular movement. CONCLUSIONS: This research can increase our understanding of sperm motility and the role of mechanics in fertilization, which could help us unveil some of the causes of idiopathic male infertility.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Motilidade dos Espermatozoides , Análise do Sêmen , Espermatozoides
19.
ACS Nano ; 18(12): 8683-8693, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465942

RESUMO

Distinctive subpopulations of circulating tumor cells (CTCs) with increased motility are considered to possess enhanced tumor-initiating potential and contribute to metastasis. Single-cell analysis of the migratory CTCs may increase our understanding of the metastatic process, yet most studies are limited by technical challenges associated with the isolation and characterization of these cells due to their extreme scarcity and heterogeneity. We report a microfluidic method based on CTCs' chemotactic motility, termed as CTC-Race assay, that can analyze migrating CTCs from metastatic non-small-cell lung cancer (NSCLC) patients with advanced tumor stages and enable concurrent biophysical and biochemical characterization of them with single-cell resolution. Analyses of motile CTCs in the CTC-Race assay, in synergy with other single cell characterization techniques, could provide insights into cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Biomarcadores Tumorais
20.
Exp Dermatol ; 33(3): e15021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429832

RESUMO

Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.


Assuntos
Integrina alfa5 , Células de Langerhans , Humanos , Fibronectinas/metabolismo , Imunidade , Integrina alfa5/metabolismo , Integrinas/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA