Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Methods Mol Biol ; 2857: 45-59, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39348054

RESUMO

Flow cytometry serves as a crucial tool in immunology, allowing for the detailed analysis of immune cell populations. γδ T cells, a subset of T cells, play pivotal roles in immune surveillance and immune aging. Assessing the phenotype and functional capabilities of γδ T cells isolated from whole blood or tissue within the context of human aging yields invaluable insights into the dynamic changes affecting immune function, tissue homeostasis, susceptibility to infections, and inflammatory responses.


Assuntos
Envelhecimento , Citometria de Fluxo , Imunofenotipagem , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunofenotipagem/métodos , Envelhecimento/imunologia , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia
2.
Blood Cells Mol Dis ; 110: 102895, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303397

RESUMO

Small molecules UM171 and SR1 have already been taken into clinically-oriented protocols for the ex vivo expansion of hematopoietic stem (HSCs) and progenitor (HPCs) cells. In order to gain further insight into their biology, in the present study we have assessed their effects, both individually and in combination, on the in vitro long-term proliferation and expansion of HSCs and HPCs contained within three different cord blood-derived cell populations: MNCs (CD34+ cells = 0.8 %), LIN- cells (CD34+ cells = 41 %), and CD34+ cells (CD34+ cells >98 %). Our results show that when added to cultures in the absence of recombinant stimulatory cytokines, neither molecule had any effect. In contrast, when added in the presence of hematopoietic cytokines, UM171 and SR1 had significant stimulatory effects on cell proliferation and expansion in cultures of LIN- and CD34+ cells. No significant effects were observed in cultures of MNCs. The effects of both molecules were more pronounced in cultures with the highest proportion of CD34+ cells, and the greatest effects were observed when both molecules were added in combination. In the absence of small molecules, cell numbers reached a peak by days 25-30, and then declined; whereas in the presence of UM171 or/and SR1 cell numbers were sustained up to day 45 of culture. Our results indicate that besides CD34+ cells, LIN- cells could also be used as input cells in clinically-oriented expansion protocols, and that using both molecules simultaneously would be a better approach than using only one of them.

3.
Stem Cell Res Ther ; 15(1): 308, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285485

RESUMO

BACKGROUND: Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS: In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS: Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS: Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.


Assuntos
Cartilagem Articular , Condrócitos , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cartilagem Articular/metabolismo , Humanos , Condrócitos/metabolismo , Condrócitos/citologia , Condrogênese/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Transplante de Células-Tronco Mesenquimais/métodos , Animais
4.
Front Immunol ; 15: 1453740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346913

RESUMO

A robust T-cell expansion process involves co-culturing T-cells with non-proliferating feeder cells combined with anti-CD3 antibody and IL-2. Although ionizing irradiation effectively inhibits feeder cell proliferation, the high operating costs limit cell therapy research to well-funded institutions. UVC, known for causing DNA damage-induced cell death and commonly used for environmental sterilization, presents a cost-effective alternative to ionizing irradiation for generating non-proliferating feeder cells. UVC irradiation of K562 artificial antigen presenting cells (aAPCs) resulted in significant DNA damage, evidenced by increased γ-H2AX phosphorylation within 15 minutes and elevated 8-OHdG levels at 24 hours. This indicates the occurrence of DNA double-strand breaks and oxidative damage. Following UVC irradiation, glucose uptake and ATP production were significantly reduced, whereas aCD3 retention at the surface of the cell increased twofold. Selective inhibition of glucose uptake and ATP production similarly enhanced aCD3 retention by approximately 10-fold and 6-fold, respectively. This suggests that UVC-induced energy deprivation dampens aCD3 internalization, potentially enhancing T-cell activation through prolonged aCD3 and T-cell receptor interaction. Tumor-infiltrating lymphocytes (TILs) expanded with UVC-irradiated PBMCs demonstrated comparable viability, expansion, immunophenotype, and effector function to those expanded with ionizing irradiation. UVC irradiation was equally effective in suppressing feeder cell proliferation and facilitating the expansion of functionally potent T-cells compared to traditional ionizing irradiation. Implementing UVC irradiation in T-cell expansion can significantly reduce costs, enhancing the accessibility and feasibility of cell therapy research across various institutions.


Assuntos
Proliferação de Células , Técnicas de Cocultura , Células Alimentadoras , Linfócitos T , Raios Ultravioleta , Humanos , Proliferação de Células/efeitos da radiação , Linfócitos T/imunologia , Linfócitos T/efeitos da radiação , Linfócitos T/metabolismo , Células K562 , Ativação Linfocitária/efeitos da radiação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Dano ao DNA
6.
Acta Biomater ; 187: 110-122, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39181177

RESUMO

Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularised extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.


Assuntos
Diferenciação Celular , Proliferação de Células , Matriz Extracelular , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Osteogênese , Animais , Humanos , Módulo de Elasticidade , Proteínas de Sinalização YAP , Resinas Acrílicas/química
7.
Int J Biol Macromol ; 278(Pt 4): 134927, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182862

RESUMO

Silk fibroin (SF) microspheres show bright prospects for biomedical applications, such as microcarriers, drug delivery, tumor embolization agents, and microscaffolds. However, the chemistry-independent preparation of SF microspheres, which is critical to biomedical applications, has been challenging. In this study, the SF microspheres with silk I crystal type were generated by using electrostatic spraying and freezing-induced assembly. The SF solution was sprayed into liquid nitrogen to form frozen microspheres with tunable size. Annealing can crystallize frozen SF to form silk I crystal type, providing a green approach to harvest water-insoluble microspheres. The SF microspheres can retain a monolithic shape in water for up to 30 days, while having a 77 % degradation ratio in PBS in 14 days, showing high stability in water and rapid degradation under physiological conditions. The biomedical application prospects of the silk I microspheres were demonstrated by cell culture and small molecule drugs (doxorubicin). The microspheres can support the growth and expansion of mammalian cells, and provide a sustainable release for DOX with 10 days. This strategy offers a green approach that avoids the use of organic solvents and cross-linkers for designing SF microsphere biomaterials.


Assuntos
Doxorrubicina , Fibroínas , Microesferas , Fibroínas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Animais , Humanos , Bombyx/química , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Seda/química
8.
Plant Cell ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133577

RESUMO

Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found two SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of four near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resultinged in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.

9.
Viruses ; 16(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066169

RESUMO

BACKGROUND: T-cell responses can be protective or detrimental during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, the underlying mechanism is poorly understood. METHODS: In this study, we screened 144 15-mer peptides spanning the SARS-CoV-2 spike, nucleocapsid (NP), M, ORF8, ORF10, and ORF3a proteins and 39 reported SARS-CoV-1 peptides in peripheral blood mononuclear cells (PBMCs) from nine laboratory-confirmed coronavirus disease 2019 (COVID-19) patients (five moderate and four severe cases) and nine healthy donors (HDs) collected before the COVID-19 pandemic. T-cell responses were monitored by IFN-γ and IL-17A production using ELISA, and the positive samples were sequenced for the T cell receptor (TCR) ß chain. The positive T-cell responses to individual SARS-CoV-2 peptides were validated by flow cytometry. RESULTS: COVID-19 patients with moderate disease produced more IFN-γ than HDs and patients with severe disease (moderate vs. HDs, p < 0.0001; moderate vs. severe, p < 0.0001) but less IL-17A than those with severe disease (p < 0.0001). A positive correlation was observed between IFN-γ production and T-cell clonal expansion in patients with moderate COVID-19 (r = 0.3370, p = 0.0214) but not in those with severe COVID-19 (r = -0.1700, p = 0.2480). Using flow cytometry, we identified that a conserved peptide of the M protein (Peptide-120, P120) was a dominant epitope recognized by CD8+ T cells in patients with moderate disease. CONCLUSION: Coordinated IFN-γ production and clonal expansion of SARS-CoV-2-specific T cells are associated with disease resolution in COVID-19. Our findings contribute to a better understanding of T-cell-mediated immunity in COVID-19 and may inform future strategies for managing and preventing severe outcomes of SARS-CoV-2 infection.


Assuntos
COVID-19 , Mapeamento de Epitopos , Epitopos de Linfócito T , Interferon gama , SARS-CoV-2 , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Interleucina-17/imunologia , Interleucina-17/metabolismo , Idoso , Linfócitos T/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD8-Positivos/imunologia
10.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954541

RESUMO

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Assuntos
Matriz Extracelular , Hidrogéis , Células-Tronco Mesenquimais , Esferoides Celulares , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Humanos , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Porosidade , Mecanotransdução Celular/fisiologia , Células Cultivadas
11.
Methods Mol Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38967910

RESUMO

The hematopoietic system constantly produces new blood cells through hematopoiesis, and maintaining this balance is vital for human health. This balance is maintained by self-renewing hematopoietic stem cells (HSCs) and various progenitor cells. Under typical circumstances, HSCs are not abundantly found in peripheral blood; hence, their mobilization from the bone marrow is vital. Hematopoietic growth factors achieve this effectively, enabling mobilization and thus allowing blood sample and thus HSC collection via apheresis. Securing a sufficient supply of HSCs is vital for successful hematopoietic reconstitution and the rapid integration of committed cells. Thus, isolation and expansion of HSCs are crucial for convenient extraction, production of transplantable quantities, genetic modifications for enhanced therapeutic efficacy, and as a source of increased/expanded/synthesized blood cells in vitro. In conclusion, the isolation and expansion of HSCs play pivotal roles in both regenerative medicine and hematology. This protocol describes the isolation of human HSCs by providing an overview of the primary method for isolating human hematopoietic stem cells from apheresis blood samples and sheds light on human HSC studies and developments in research and medicine.

12.
Sci Rep ; 14(1): 15556, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969656

RESUMO

Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.


Assuntos
Matriz Extracelular , Imunoterapia , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Imunoterapia/métodos , Engenharia Tecidual/métodos , Células HCT116 , Neoplasias Colorretais/patologia , Animais , Camundongos , Proliferação de Células , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
14.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012193

RESUMO

AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.

15.
IUBMB Life ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046102

RESUMO

The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.

16.
Nanotechnology ; 35(45)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39084233

RESUMO

The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Propriedades de Superfície , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética
17.
Biol Reprod ; 111(2): 391-405, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832713

RESUMO

Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.


Assuntos
Citoesqueleto de Actina , Galinhas , Proteína Forkhead Box L2 , Células da Granulosa , Proteína rhoA de Ligação ao GTP , Animais , Feminino , Células da Granulosa/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Citoesqueleto de Actina/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Folículo Ovariano/metabolismo , Regulação da Expressão Gênica
18.
Plant Physiol Biochem ; 213: 108804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852237

RESUMO

Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.


Assuntos
Divisão Celular , Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/metabolismo , Fragaria/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
19.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
20.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732404

RESUMO

Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA