Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(9): 2953-2969, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38814333

RESUMO

Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.


Assuntos
Cálcio , Quebras de DNA de Cadeia Dupla , Ferroptose , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , terc-Butil Hidroperóxido , Ferroptose/efeitos dos fármacos , Cálcio/metabolismo , Humanos , terc-Butil Hidroperóxido/toxicidade , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542083

RESUMO

Meibomian gland dysfunction (MGD) is one of the main causes of dry eye disease. To better understand the physiological functions of human meibomian glands (MGs), the present study compared MGs with free sebaceous glands (SGs) and hair-associated SGs of humans using morphological, immunohistochemical, and liquid chromatography-mass spectrometry (LCMS)-based lipidomic approaches. Eyelids with MGs, nostrils, lips, and external auditory canals with free SGs, and scalp with hair-associated SGs of body donors were probed with antibodies against cytokeratins (CK) 1, 8, 10, and 14, stem cell markers keratin 15 and N-cadherin, cell-cell contact markers desmoglein 1 (Dsg1), desmocollin 3 (Dsc3), desmoplakin (Dp), plakoglobin (Pg), and E-cadherin, and the tight junction protein claudin 5. In addition, Oil Red O staining (ORO) was performed in cryosections. Secretions of MGs as well as of SGs of nostrils, external auditory canals, and scalps were collected from healthy volunteers, analyzed by LCMS, and the data were processed using various multivariate statistical analysis approaches. Serial sections of MGs, free SGs, and hair-associated SGs were 3D reconstructed and compared. CK1 was expressed differently in hair-associated SGs than in MGs and other free SGs. The expression levels of CK8, CK10, and CK14 in MGs were different from those in hair-associated SGs and other free SGs. KRT15 was expressed differently in hair-associated SGs, whereas N-cadherin was expressed equally in all types of glands. The cell-cell contact markers Dsg1, Dp, Dsc3, Pg, and E-cadherin revealed no differences. ORO staining showed that lipids in MGs were more highly dispersed and had larger lipid droplets than lipids in other free SGs. Hair-associated SGs had a smaller number of lipid droplets. LCMS revealed that the lipid composition of meibum was distinctively different from that of the sebum of the nostrils, external auditory canals, and scalp. The 3D reconstructions of the different glands revealed different morphologies of the SGs compared with MGs which are by far the largest type of glands. In humans, MGs differ in their morphology and secretory composition and show major differences from free and hair-associated SGs. The composition of meibum differs significantly from that of sebum from free SGs and from hair-associated SGs. Therefore, the MG can be considered as a highly specialized type of holocrine gland that exhibits all the histological characteristics of SGs, but is significantly different from them in terms of morphology and lipid composition.


Assuntos
Glândulas Tarsais , Glândulas Sebáceas , Humanos , Glândulas Tarsais/metabolismo , Lágrimas/metabolismo , Biomarcadores/metabolismo , Lipídeos/química , Caderinas/metabolismo
3.
Exp Dermatol ; 33(1): e14983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009253

RESUMO

Tumour cell detachment from the primary tumour is an early and crucial step of the metastatic cascade. At the single cell level, it was already shown that migrating melanoma cells establish both intra- and extracellular pH gradients and that the Na+ /H+ exchanger NHE1 accumulates at the leading edges to strengthen cell-matrix interactions. However, less is known about the role of NHE1 in collective cell migration and the specific pH microenvironment at tumour cell-cell contacts. We used MV3 melanoma cells transfected with a NHE1-expressing vector or a control vector. NHE1 localization at cell-cell contacts was assessed via immunofluorescence imaging. Collective migration was analysed by live-cell imaging. The NHE1 activity and the perimembranous pH were measured both intra- and extracellularly by ratiometric fluorescence microscopy. NHE1 clearly localizes at cell-cell contacts. Its overexpression further increases migratory speed and translocation in multidirectional pathway analyses. NHE1 overexpressing MV3 cells also move further away from their neighbouring cells during wound closure assays. pH measurements revealed that the NHE1 is highly active at cell-cell contacts of melanoma cells. NHE1-mediated pH dynamics at such contact sites are more prominent in NHE1-overexpressing melanoma cells. Our findings highlight the contribution of the NHE1 towards modulation and plasticity of melanoma cell-cell contacts. We propose that its localization and functional activity at cell-cell contacts promotes evasion of single melanoma cells from the primary tumour.


Assuntos
Melanoma , Humanos , Trocador 1 de Sódio-Hidrogênio/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , Trocadores de Sódio-Hidrogênio/metabolismo , Comunicação Celular , Concentração de Íons de Hidrogênio , Microambiente Tumoral
4.
Cells Dev ; 177: 203899, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160720

RESUMO

Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.


Assuntos
Microtúbulos , Crista Neural , Animais , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Crista Neural/metabolismo , Microtúbulos/metabolismo , Xenopus laevis , Movimento Celular/genética
5.
Curr Issues Mol Biol ; 45(9): 7538-7556, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754259

RESUMO

Ouabain, an organic compound with the ability to strengthen the contraction of the heart muscle, was originally derived from plants. It has been observed that certain mammalian species, including humans, naturally produce ouabain, leading to its classification as a new type of hormone. When ouabain binds to Na+/K+-ATPase, it elicits various physiological effects, although these effects are not well characterized. Previous studies have demonstrated that ouabain, within the concentration range found naturally in the body (10 nmol/L), affects the polarity of epithelial cells and their intercellular contacts, such as tight junctions, adherens junctions, and gap junctional communication. This is achieved by activating signaling pathways involving cSrc and Erk1/2. To further investigate the effects of ouabain within the hormonally relevant concentration range (10 nmol/L), mRNA-seq, a high-throughput sequencing technique, was employed to identify differentially expressed transcripts. The discovery that the transcript encoding MYO9A was among the genes affected prompted an exploration of whether RhoA and its downstream effector ROCK were involved in the signaling pathways through which ouabain influences cell-to-cell contacts in epithelial cells. Supporting this hypothesis, this study reveals the following: (1) Ouabain increases the activation of RhoA. (2) Treatment with inhibitors of RhoA activation (Y27) and ROCK (C3) eliminates the enhancing effect of ouabain on the tight junction seal and intercellular communication via gap junctions. These findings further support the notion that ouabain acts as a hormone to emphasize the epithelial phenotype.

6.
Methods Mol Biol ; 2654: 113-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106178

RESUMO

The plasma membrane of cells is covered by proteins, glycoproteins, and glycolipids with molecular heights ranging from just a few nanometers to hundreds of nanometers. Formation of cell-cell contacts and signal transduction by individual receptors can be dependent on both the average height of a cell's glycocalyx and the specific height of individual receptors, sometimes with nanometer-scale sensitivity. While super-resolution imaging techniques allow molecular distances to be measured with the sub-diffraction limited resolution, typically 10 nm in the lateral direction and 100 nm in the axial direction, measurements of molecular heights at the single nanometer scale on native cell membranes have been difficult to obtain. Cell surface optical profilometry (CSOP) is a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation with high precision by radially averaging across many molecules. Here we describe how to make CSOP measurements of multi-domain proteins on model membrane surfaces as well as native cell surfaces.


Assuntos
Glicocálix , Glicoproteínas , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Transdução de Sinais
7.
Biology (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829482

RESUMO

Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.

8.
Regen Biomater ; 10: rbac100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683745

RESUMO

Mechanical stiffness is recognized as a key physical factor and directs cell function via a mechanotransduction process, from extracellular physical cues to intracellular signaling cascades that affect transcriptional activity. Cells continually receive mechanical signals from both the surrounding matrix and adjacent cells. However, how mechanical stiffness cue at cell-substrate interfaces coordinates cell-cell junctions in guiding mesenchymal stem cell behaviors is poorly understood. Here, polydimethylsiloxane substrates with different stiffnesses were used to study mechanosensation/transduction mechanisms in controlling odontogenic differentiation of dental papilla cells (DPCs). DPC phenotypes (morphology and differentiation) changed in response to the applied force derived from stiff substrates. Significantly, higher expression of paxillin on stiffer substrates promoted DPC dentinogenesis. Upon treatment with siRNA to knockdown paxillin, N-cadherin increased mainly in the cytomembrane at the area of cell-cell contacts, whereas ß-catenin decreased in the nuclei. The result of a double luciferase reporter assay showed that stiffness promoted ß-catenin binding to TCF, which could coactivate the target genes associated with odontogenic differentiation, as evidenced by bioinformatics analysis. Finally, we determined that the addition of a ß-catenin inhibitor suppressed DPC mineralization in all the stiffness groups. Thus, our results indicated that a mechanotransduction process from cell-substrate interactions to cell-cell adhesions was required for DPC odontogenic differentiation under the stimulation of substrate stiffness. This finding suggests that stem cell fate specification under the stimulus of stiffness at the substrates is based on crosstalk between substrate interactions and adherens junctions, which provides an essential mechanism for cell-based tissue engineering.

9.
Heliyon ; 8(10): e10862, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36237976

RESUMO

Claudin-4, a protein with the structure of classic claudins most often found in cell-cell junctions, is frequently overexpressed in epithelial cancers where its localization has not been studied. In this study we aimed to find out where this membrane protein is localized in an ovarian tumor model, OVCAR3 cells, that express high levels of the protein. Immunohistochemical studies showed claudin-4 staining in a perinuclear region, at most plasma membranes and in cytoplasmic puncta. Native claudin-4 did not overlap with phosphorylated claudin-4, which was partially located in focal adhesions. Using claudin-4 BioID technology we confirmed that large amounts of claudin-4 are localized to the Golgi compartment, including in dispersed Golgi in cells where claudin-4 is partially knocked down and in dividing cells. Claudin-4 appears to be present in the vicinity of several types of cell-cell junctions, but there is no evidence that it forms tight junctions in these tumor cells. Both claudin-4, the Golgi marker GM130, and the plasma membrane receptor Notch2 were found in dispersed Golgi in dividing cells. This definition of the cellular architecture of claudin-4 should provide a framework for better understanding of the function of claudin-4 in tumor cells and its molecular interactions.

10.
Cells ; 11(16)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010583

RESUMO

Cell-cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction's transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial-mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and ß-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Junções Aderentes/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/patologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Multimerização Proteica
11.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804866

RESUMO

Carcinomas of the pancreatobiliary system confer an especially unfavorable prognosis. The differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and its subtypes versus liver metastasis of ductal adenocarcinoma of the pancreas (PDAC) is clinically important to allow the best possible therapy. We could previously show that E-cadherin and N-cadherin, transmembrane glycoproteins of adherens junctions, are characteristic features of hepatocytes and cholangiocytes. We therefore analyzed E-cadherin and N-cadherin in the embryonally related epithelia of the bile duct and pancreas, as well as in 312 iCCAs, 513 carcinomas of the extrahepatic bile ducts, 228 gallbladder carcinomas, 131 PDACs, and precursor lesions, with immunohistochemistry combined with image analysis, fluorescence microscopy, and immunoblots. In the physiological liver, N-cadherin colocalizes with E-cadherin in small intrahepatic bile ducts, whereas larger bile ducts and pancreatic ducts are positive for E-cadherin but contain decreasing amounts of N-cadherin. N-cadherin was highly expressed in most iCCAs, whereas in PDACs, N-cadherin was negative or only faintly expressed. E- and N-cadherin expression in tumors of the pancreaticobiliary tract recapitulate their expression in their normal tissue counterparts. N-cadherin is a helpful marker for the differential diagnosis between iCCA and PDAC, with a specificity of 96% and a sensitivity of 67% for small duct iCCAs and 50% for large duct iCCAs.

12.
Front Cell Neurosci ; 16: 825695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250488

RESUMO

The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.

13.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203628

RESUMO

Cellular and molecular mechanisms of the peripheral immune system (e.g., macrophage and monocyte) in programming endotoxin tolerance (ET) have been well studied. However, regulatory mechanism in development of brain immune tolerance remains unclear. The inducible COX-2/PGE2 axis in microglia, the primary innate immune cells of the brain, is a pivotal feature in causing inflammation and neuronal injury, both in acute excitotoxic insults and chronic neurodegenerative diseases. This present study investigated the regulatory mechanism of PGE2 tolerance in microglia. Multiple reconstituted primary brain cells cultures, including neuron-glial (NG), mixed glial (MG), neuron-enriched, and microglia-enriched cultures, were performed and consequently applied to a treatment regimen for ET induction. Our results revealed that the levels of COX-2 mRNA and supernatant PGE2 in NG cultures, but not in microglia-enriched and MG cultures, were drastically reduced in response to the ET challenge, suggesting that the presence of neurons, rather than astroglia, is required for PGE2 tolerance in microglia. Furthermore, our data showed that neural contact, instead of its soluble factors, is sufficient for developing microglial PGE2 tolerance. Simultaneously, this finding determined how neurons regulated microglial PGE2 tolerance. Moreover, by inhibiting TLR4 activation and de novo protein synthesis by LPS-binding protein (LBP) manipulation and cycloheximide, our data showed that the TLR4 signal and de novo protein synthesis are necessary for microglia to develop PGE2 tolerance in NG cells under the ET challenge. Altogether, our findings demonstrated that neuron-microglia contacts are indispensable in emerging PGE2 tolerance through the regulation of TLR4-mediated de novo protein synthesis.

14.
Cells ; 10(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572111

RESUMO

Ferroptosis is a regulated form of cell death characterized by iron dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcoming therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation, including context-specific effects mediated by the neighbouring cells through cell-cell contacts. Here, we give an overview on the molecular events and machinery linked to ferroptosis induction and commitment. We further summarize and discuss current knowledge about the role of cell-cell contacts, which differ in ferroptosis regulation between normal somatic cells and cancer cells. We present emerging concepts on the underlying mechanisms, address open questions, and discuss the possible impact of cell-cell contacts on exploiting ferroptosis in cancer therapy.


Assuntos
Doenças Cardiovasculares/patologia , Comunicação Celular , Ferroptose , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Animais , Humanos
15.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502237

RESUMO

Neural crest (NC) cells are highly migratory cells that contribute to various vertebrate tissues, and whose migratory behaviors resemble cancer cell migration and invasion. Information exchange via dynamic NC cell-cell contact is one mechanism by which the directionality of migrating NC cells is controlled. One transmembrane protein that is most likely involved in this process is protein tyrosine kinase 7 (PTK7), an evolutionary conserved Wnt co-receptor that is expressed in cranial NC cells and several tumor cells. In Xenopus, Ptk7 is required for NC migration. In this study, we show that the Ptk7 protein is dynamically localized at cell-cell contact zones of migrating Xenopus NC cells and required for contact inhibition of locomotion (CIL). Using deletion constructs of Ptk7, we determined that the extracellular immunoglobulin domains of Ptk7 are important for its transient accumulation and that they mediate homophilic binding. Conversely, we found that ectopic expression of Ptk7 in non-NC cells was able to prevent NC cell invasion. However, deletion of the extracellular domains of Ptk7 abolished this effect. Thus, Ptk7 is sufficient at protecting non-NC tissue from NC cell invasion, suggesting a common role of PTK7 in contact inhibition, cell invasion, and tissue integrity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Movimento Celular , Inibição de Contato , Neoplasias Pulmonares/metabolismo , Crista Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Polaridade Celular , Humanos , Neoplasias Pulmonares/patologia , Xenopus laevis
16.
Front Genet ; 12: 662843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149804

RESUMO

Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.

17.
Biology (Basel) ; 9(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291824

RESUMO

Tumor resistance to therapy is associated with the 3D organization and peculiarities of the tumor microenvironment, of which intercellular adhesion is a key participant. In this work, the abundance of contact proteins was compared in SKOV-3 and SKOV-3.ip human ovarian adenocarcinoma cell lines, cultivated in monolayers, tumor spheroids and collagen hydrogels. Three-dimensional models were characterized by extremely low expression of basic molecules of adherens junctions E-cadherin and demonstrated a simultaneous decrease in desmosomal protein desmoglein-2, gap junction protein connexin-43 and tight junction proteins occludin and ZO-1. The reduction in the level of contact proteins was most pronounced in collagen hydrogel, accompanied by significantly increased resistance to treatment with doxorubicin and targeted anticancer toxin DARPin-LoPE. Thus, we suggest that 3D models of ovarian cancer, especially matrix-based models, tend to recapitulate tumor microenvironment and treatment responsiveness to a greater extent than monolayer culture, so they can be used as a highly relevant platform for drug efficiency evaluation.

18.
J Clin Med ; 9(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570986

RESUMO

Epithelial-mesenchymal transition (EMT) is an important process of cell remodeling characterized by the gradual loss of the epithelial phenotype and progressive gain of a mesenchymal phenotype. EMT is not an all-or-nothing process, but instead a transition of epithelial to mesenchymal cells with intermediate cell states. Recently, EMT was described in endometriosis, and many EMT-specific pathways like Twist, Snail, Slug, Zinc finger E-box-binding homeobox 1/2 (ZEB1/2), E/N-cadherin, keratins, and claudins are involved. However, as pointed out in this review, a comparison of the eutopic endometrium of women with and without endometriosis yielded only subtle changes of these EMT markers. Furthermore, only very few alterations in cell-cell contacts could be found but without changes in the epithelial phenotype. This suggests only a partial EMT which is not a prerequisite for the detachment of endometrial cells and, thus, not critical for the first step(s) in the pathogenesis of endometriosis. In contrast, the majority of changes in the EMT-related marker expression were found in the ectopic endometrium, especially in the three endometriotic entities, ovarian, peritoneal, and deep infiltrating endometriosis (DIE), compared with the eutopic endometrium. In this review, we examine the most important EMT pathways described in endometriosis and propose that partial EMT might result from the interaction of endometrial implants with their surrounding microenvironment.

19.
Mater Sci Eng C Mater Biol Appl ; 109: 110492, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228989

RESUMO

Laser texturing is a technique that has been increasingly explored for the surface modification of several materials on different applications. Laser texturing can be combined with conventional coating techniques to functionalize surfaces with bioactive properties, stimulating cell differentiation and adhesion. This study focuses on the cell adhesion of laser-sintered coatings of hydroxyapatite (HAp) and 45S5 bioactive glass (45S5 BG) on zirconia textured surfaces using MC3T3-E1 cells. For this purpose, zirconia surfaces were micro-textured via laser and then coated with HAp and 45S5 BG glass via dip coating. Afterwards, the bioactive coatings were laser sintered, and a reference group of samples was conventionally sintering. The cell adhesion characterisation was achieved by cell viability performing live/dead analysis using fluorescence stains and by SEM observations for a qualitative analysis of cell adhesion. The in vitro results showed that a squared textured pattern with 100µm width grooves functionalized with a bioactive coating presented an increase of 90% of cell viability compared to flat surfaces after 48h of incubation. The functionalized laser sintered coatings do not present significant differences in cell viability when compared to conventionally sintered coatings. Therefore, the results reveal that laser sintering of HAp and 45S5 BG coatings is a fast and attractive coating technique.


Assuntos
Osteoblastos/efeitos dos fármacos , Zircônio/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley
20.
Elife ; 82019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793877

RESUMO

Stable cell-cell contacts underpin tissue architecture and organization. Quantification of junctions of mammalian epithelia requires laborious manual measurements that are a major roadblock for mechanistic studies. We designed Junction Mapper as an open access, semi-automated software that defines the status of adhesiveness via the simultaneous measurement of pre-defined parameters at cell-cell contacts. It identifies contacting interfaces and corners with minimal user input and quantifies length, area and intensity of junction markers. Its ability to measure fragmented junctions is unique. Importantly, junctions that considerably deviate from the contiguous staining and straight contact phenotype seen in epithelia are also successfully quantified (i.e. cardiomyocytes or endothelia). Distinct phenotypes of junction disruption can be clearly differentiated among various oncogenes, depletion of actin regulators or stimulation with other agents. Junction Mapper is thus a powerful, unbiased and highly applicable software for profiling cell-cell adhesion phenotypes and facilitate studies on junction dynamics in health and disease.


Assuntos
Comunicação Celular/fisiologia , Biologia Computacional/métodos , Células Endoteliais/fisiologia , Junções Intercelulares/fisiologia , Queratinócitos/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Caderinas/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Queratinócitos/metabolismo , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Fenótipo , Ratos Sprague-Dawley , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA