Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
BMC Infect Dis ; 24(1): 1110, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375585

RESUMO

BACKGROUND: The reactivation of tuberculosis (TB) among kidney transplant (KT) recipients in an endemic area is of general concern. However, the epidemiology of latent TB infection (LTBI) status and its dynamic change responses have not been explored. METHODS: Between September 2020 and August 2021, a prospective study was conducted to investigate the status of LTBI in KT recipients who received a 9-month isoniazid universal prophylaxis. This status was measured using the interferon-gamma release assay (IGRA) with T-SPOT.TB before transplant, as well as at one month and nine months post-transplant. RESULTS: Ninety-one KT recipients had a mean (SD) age of 45 (11) years, and 41% were female. Sixty-eight (75%) patients received a deceased donor allograft, and eighty-six (91%) patients received induction immunosuppressive therapy. The IGRA results were positive, borderline, negative, and indeterminate in 14 (15.4%), 6 (6.6%), 64 (70.3%), and 7 (7.8%) patients, respectively. Among 84 evaluable patients, 20 (23.8%) KT recipients were defined as having LTBI. Older age was significantly associated with LTBI (OR 1.06 [95% CI 1.01-1.12], p = 0.03). Among the 77 KT recipients who completed monitoring, 55 had negative IGRA results. Three (5.4%) KT recipients had conversion post-transplant. One of them developed pulmonary TB at 1 week after the transplant. Among the 13 patients with positive results, 8 (61.5%) remained positive, 1 (7.7%) had an indeterminate result at 1-month post-transplant and subsequently tested positive at 9 months post-transplant, and 4 (30.8%) experienced reversion to negative results throughout the study. CONCLUSIONS: In a high TB-endemic area, one-quarter of KT recipients were reported to have LTBI, and the dynamic change of IGRA response in KT recipients is plausible post-transplant.


Assuntos
Testes de Liberação de Interferon-gama , Transplante de Rim , Tuberculose Latente , Transplantados , Humanos , Tuberculose Latente/diagnóstico , Feminino , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Testes de Liberação de Interferon-gama/métodos , Estudos Prospectivos , Adulto , Isoniazida/uso terapêutico , Antituberculosos/uso terapêutico , Programas de Rastreamento/métodos
2.
Vaccine ; 42(26): 126385, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326211

RESUMO

Mastitis is a major issue for the dairy industry. Despite multiple attempts, the efficacy of available mastitis vaccines is limited and this has been attributed to their incapacity to trigger robust cell-mediated immunity. Yeasts have recently been identified as promising antigen vectors capable of inducing T-cell responses, surpassing the antibody-biased mechanisms elicited by conventional adjuvanted vaccines. In this study, we combine in vitro, ex vivo, and in vivo approaches to evaluate the potential of the yeast Saccharomyces cerevisiae as a platform for novel vaccines against bovine mastitis. We demonstrate that S. cerevisiae is safe for intramuscular and intramammary immunisation in dairy cows. Vaccination resulted in a significant increase of IFNγ and IL-17 responses against the yeast platform but not against the vaccine antigen. These observations highlight that strategies to counterbalance the immunodominance of S. cerevisiae antigens are necessary for the development of successful vaccine candidates.

3.
Vet Immunol Immunopathol ; 276: 110828, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39303453

RESUMO

Protozoan parasite Neospora caninum causes abortion in infected cattle while others remain asymptomatic. Host immunity plays a critical role in the outcome of bovine neosporosis. Despite extensive research, there is a critical gap in therapeutic and preventive measures, and no effective vaccines are available. Both beef and dairy cattle can suffer from N. caninum-induced abortions, but cumulative evidence suggests a breed susceptibility being higher in dairy compared with beef breeds. It has been established that the response to N. caninum infection primarily involves a cell-mediated immune response (CMIR) regulated by T-helper type 1 (Th1) cells and specific cytokines. The delayed-type hypersensitivity (DTH) skin test has been used to measure the ability of livestock to generate CMIR, in the context of breeding for disease resistance and as a method for diagnosis of several diseases. In this study, we evaluated the immune response triggered by an N. caninum-induced DTH skin test between Holstein - a dairy breed intensively selected- and Argentinean Creole heifers - a beef breed with minimal genetic selection- to assess differences in CMIR following experimental N. caninum infection. The immune response, measured through skinfold thickness and histological and immune molecular analysis, revealed variations between the breeds. Our study found an increased CMIR in Argentinean Creole heifers compared to Holstein heifers. Differential gene expression of key cytokines was observed at the DTH skin test site. Argentinean Creole heifers exhibited elevated IFN-γ, IL-12, IL-10, and IL-4, while Holstein heifers only showed higher expression of IL-17. This finding could underscore genetic diversity in response to neosporosis, which could be used in breeding cattle strategies for disease resistance in cattle populations.


Assuntos
Doenças dos Bovinos , Coccidiose , Imunidade Celular , Neospora , Animais , Bovinos , Neospora/imunologia , Coccidiose/veterinária , Coccidiose/imunologia , Coccidiose/parasitologia , Feminino , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/genética , Citocinas/genética , Citocinas/imunologia , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/veterinária
4.
Open Vet J ; 14(8): 1921-1927, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39308712

RESUMO

Background: Bovine respiratory disease (BRD) is a complex illness that impacts the respiratory system of domestic cattle, resulting in significant financial losses for the agriculture industry. Inactivated or modified live (MLV) pathogen vaccines are often used as a management tool to prevent and control BRD effectively. Aim: The purpose of this study is to assess the cell-mediated immune response (CMI) induced by two commercially available polyvalent vaccines, namely the MLV (cattle master gold FP) and the inactivated (CATTLEWIN-5K) vaccine. Methods: A total of 20 seronegative heifers against 4 BRD viruses, bovine alphaherpisvirus-1 (BoAHV-1), bovine viral diarrhea virus (BVDV BVDV-1: Pesti virus A; BVDV-2: Pesti virus B), bovine respiratory syncytial virus (BRSV) and bovine parainfluenza virus-3 (BPIV3) were chosen for this study. The heifers were divided into three groups. The first group (n = 6) received no vaccination and was kept as a control. The second and third groups (seven heifers each) were vaccinated twice with either an MLV or inactivated vaccine. The gene expression level of interleukin-6 (IL-6) and interferon-gamma (INF-γ) was measured using real-time quantitative polymerase chain reaction on the 7th, 14th, 21st, 28th, and 60th days post-vaccination. The results were compared with the control group to study the effectiveness of the vaccines. Results: There was an upregulation in the expression level of IL-6 and INF-γ in both MLV and inactivated vaccinated groups. The level of IL-6 mRNA expression was statistically increased from the 14th and 28th days post-vaccination in MLV and inactivated vaccine groups, respectively. The expression level of INF-γ increased significantly from the 2nd and 4th weeks post-vaccination in the MLV and inactivated vaccine groups, respectively. The mean expression level of IL-6 and INF-γ mRNAs was significantly higher in the MLV vaccine group than in the inactivated vaccine group at each examination time. Conclusion: Both investigated vaccines are efficient in stimulating CMI, particularly with the MLV vaccine showing a higher preponderance in IL-6 and INF-γ.


Assuntos
Imunidade Celular , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Bovinos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Feminino , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/virologia
5.
Virology ; 600: 110243, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288613

RESUMO

Herpes zoster (HZ), or shingles, is caused by reactivation of the varicella-zoster virus (VZV), which remains latent in the sensory ganglia until immunity wanes with age. The representative HZ vaccine, Shingrix is efficacious but causes side effects due to vaccine adjuvants. Therefore, the development of highly efficacious vaccines with minimal side effects is required. We developed chimeric adenovirus vector (ChimAd)-based HZ vaccine candidates encoding the VZV glycoprotein E (gE). These candidates include ChimAd-tPAgE, in which the signal peptide is replaced with tissue plasminogen activator (tPA), and ChimAd-WTgE, which retains the original signal peptide. C57BL/6 mice were immunized with VZV-vaccine candidates, and cellular and humoral immune responses were evaluated using interferon-γ ELISPOT and ELISA. The ChimAd-based HZ vaccines induced high levels of gE-specific antibodies and cell-mediated immunity. ChimAd-tPAgE (optimal dose: 1 × 107 IFU) elicited a more robust gE-specific T-cell response than Shingrix and Zostavax, showing potential as HZ prophylactic vaccines.

6.
Vaccine ; 42(25): 126213, 2024 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138071

RESUMO

Zika virus (ZIKV) infection remains a global public health problem. After the "Public Health Emergencies of International Concern" declared in February 2016, the incidence of new infections by this pathogen has been decreasing in many areas. However, there is still a likely risk that ZIKV will spread to more countries. To date, there is no vaccine or antiviral drug available to prevent or treat Zika virus infection. In the Zika vaccine development, those based on protein subunits are attractive as a non-replicable platform due to their potentially enhanced safety profile to be used in all populations. However, these vaccines frequently require multiple doses and adjuvants to achieve protective immunity. In this study we show the immunological evaluation of new formulations of the recombinant protein ZEC, which combines regions of domain III of the envelope and the capsid from ZIKV. Two nucleotide-based adjuvants were used to enhance the immunity elicited by the vaccine candidate ZEC. ODN 39M or c-di-AMP was incorporated as immunomodulator into the formulations combined with aluminum hydroxide. Following immunizations in immunocompetent BALB/c mice, the formulations stimulated high IgG antibodies. Although the IgG subtypes suggested a predominantly Th1-biased immune response by the formulation including the ODN 39M, cellular immune responses measured by IFNγ secretion from spleen cells after in vitro stimulations were induced by both immunomodulators. These results demonstrate the capacity of both immunomodulators to enhance the immunogenicity of the recombinant subunit ZEC as a vaccine candidate against ZIKV.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Infecção por Zika virus , Zika virus , Animais , Zika virus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunogenicidade da Vacina , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adjuvantes de Vacinas , Imunidade Celular , Proteínas do Envelope Viral/imunologia , Proteínas do Capsídeo/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia
7.
Brain Behav Immun ; 122: 75-94, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39127088

RESUMO

BACKGROUND: Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES: This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS: To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS: The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION: LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.


Assuntos
COVID-19 , Quimiocinas , Citocinas , Peptídeos e Proteínas de Sinalização Intercelular , Síndrome de COVID-19 Pós-Aguda , Humanos , Proteína C-Reativa/metabolismo , Quimiocinas/imunologia , COVID-19/imunologia , Citocinas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Síndromes Neurotóxicas/imunologia , Síndrome de COVID-19 Pós-Aguda/imunologia
8.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130684

RESUMO

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Assuntos
Adjuvantes Imunológicos , Imunidade Celular , Camundongos Endogâmicos C57BL , Nanopartículas , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Feminino , Vacinas de mRNA , Camundongos , Herpesvirus Humano 3/imunologia , Anticorpos Antivirais/sangue , Imunização Secundária/métodos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/administração & dosagem , Vacina contra Herpes Zoster/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Lipossomos
9.
Hum Vaccin Immunother ; 20(1): 2395679, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205626

RESUMO

In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.


Assuntos
Imunidade Celular , Linfócitos T , Doenças Preveníveis por Vacina , Vacinas , Humanos , Linfócitos T/imunologia , Doenças Preveníveis por Vacina/prevenção & controle , Doenças Preveníveis por Vacina/imunologia , Vacinas/imunologia , Imunidade Celular/imunologia , Reações Cruzadas/imunologia , Animais , Vacinação
10.
Front Immunol ; 15: 1414830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007131

RESUMO

Introduction: Cytomegalovirus (CMV) infection remains a challenge following kidney transplantation (KTx). Currently, CMV-IgG serostatus at transplantation is used to individualize CMV preventive strategies. We assessed the clinical utility of CMV-IGRA for predicting CMV infection following KTx. Methods: We performed a nationwide prospective cohort study from August 2016 until December 2022. Data from all adult KTx recipients in Norway, n=1,546 (R+; n=1,157, D+/R-; n=260, D-/R-; 129), were included with a total of 3,556 CMV-IGRA analyses (1,375 at KTx, 1,188 at eight weeks, 993 one-year after KTx) and 35,782 CMV DNAemia analyses. Results: In R+ recipients CMV-IGRA status, measured at any of the time-points, could not identify any differential risk of later CMV infection. D+/R- recipients remaining CMV-IGRA negative 1-year after transplantation (regardless of positive CMV DNAemia and/or CMV IgG status at that time) had increased risk of developing later CMV infection compared to D+/R- recipients who had become CMV-IGRA positive (14% vs. 2%, p=0.01). Conclusion: Knowledge of pre-transplant CMV-IGRA status did not provide additional information to CMV-IgG serostatus that could improve current post-transplant CMV treatment algorithms. However, D+/R- recipients with a persisting negative CMV-IGRA one-year after transplantation remained at increased risk of experiencing later CMV infection. Therefore we advocate post-transplant CMV-IGRA monitoring in these patients.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Imunidade Celular , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Anticorpos Antivirais/sangue , Idoso , Noruega/epidemiologia , Fatores de Risco , Imunoglobulina G/sangue
11.
Vaccines (Basel) ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066373

RESUMO

Arenavirus-based vectors are being investigated as therapeutic vaccine candidates with the potential to elicit robust CD8 T-cell responses. We compared the immunogenicity of replicating (artPICV and artLCMV) and non-replicating (rPICV and rLCMV) arenavirus-based vectors expressing simian immunodeficiency virus (SIV) Gag and Envelope (Env) immunogens in treatment-naïve non-human primates. Heterologous regimens with non-replicating and replicating vectors elicited more robust SIV IFN-γ responses than a homologous regimen, and replicating vectors elicited significantly higher cellular immunogenicity than non-replicating vectors. The heterologous regimen elicited high anti-Env antibody titers when administered intravenously, with replicating vectors inducing significantly higher titers than non-replicating vectors. Intramuscular immunization resulted in more durable antibody responses than intravenous immunization for both vector platforms, with no difference between the replicating and non-replicating vectors. Overall, both replicating and non-replicating arenavirus vectors generated robust T- and B-cell-mediated immunity to SIV antigens in treatment-naïve non-human primates, supporting further evaluation of these vectors in a clinical setting for HIV therapy.

12.
Vaccines (Basel) ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39066412

RESUMO

Herpes zoster (HZ) is an infectious disease caused by the reactivation of varicella zoster virus (VZV), with 68% of cases occurring in adults over 50 years of age. HZ/su (Shingrix®) was approved by the Food and Drug Administration in 2017 for the prevention of HZ in individuals ≥ 50 years of age and showed very good protection from HZ. However, due to the use of the adjuvant AS01B, adverse reactions caused by Shingrix are a concern. Aluminum hydroxide is the most commonly used adjuvant and is widely used in a variety of vaccines. We developed a recombinant zoster vaccine (code: LZ901) consisting of a tetramer of VZV glycoprotein E (gE) and a human Fc fusion protein expressed in CHO cells, an immune complex-like molecule that can be adsorbed with an aluminum hydroxide adjuvant. We compared the immunogenicity of LZ901 with that of HZ/su in BALB/c mice. The results showed that LZ901 induced levels of gE-specific IgG antibodies comparable to those induced by HZ/su, and the results of FAMA titers further demonstrated their similar neutralizing antibody abilities. Most importantly, LZ901 induced higher levels of cell-mediated immunity (CMI) (which plays a decisive role in the efficacy of zoster vaccines) than HZ/su in BALB/c mice. The numbers of cytokine-producing T cells in LZ901-vaccinated mice were significantly greater than those in v-vaccinated mice, and the proportions of CD4+ and CD8+ T cells producing at least two types of cytokines in LZ901-vaccinated mice were significantly greater than those in HZ/su-vaccinated mice.

13.
Vaccines (Basel) ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066422

RESUMO

Objective. We aimed to report the real-world use and outcomes over time in immunocompromised individuals receiving tixagevimab/cilgavimab (T/C) pre-exposure prophylaxis (PrEP). Methods. This observational study included participants who received T/C PrEP, categorized into three groups: (i) No COVID-19 (NoC), i.e., participants who never had COVID-19; (ii) Hybrids (H), i.e., participants who had COVID-19 before PrEP; and (iii) Break-through Infections (BTIs), i.e., participants who had COVID-19 after PrEP. The study measured several immune markers at the administration of T/C (T0) at 3 (T1), 6 (T2), and 9 (T3) months afterward. These markers included: anti-receptor-binding domain (RBD) IgG antibodies; BA.5-neutralizing antibodies (nAbs); mucosal IgG; and T cell immunity. The incidence rate ratios for BTIs were analyzed using a Poisson regression model. Results. A total of 231 participants with a median age of 63 years (IQR 54.0-73.0). were included. Among these, 84% had hematological diseases and received a median of three vaccine doses. N = 72 participants belonged to the NoC group, N = 103 to the H group, and n = 56 to the BTI group (24%), with most BTIs being mild/moderate. The incidence rate (IR) of BTIs was 4.2 per 100 patient-months (95% CI 3.2-5.4), with no associated risk factors identified. There was a significant increase in anti-RBD IgG levels 3 months after the T/C administration in all groups, followed by a decline at 6 months, whereas at the same time points, geometric mean titers (GMTs) of anti-BA.5 nAbs were low for all groups and were around or below the detection threshold. No significant changes were observed in IFN-γ levels. The mucosal immune response was observed only 3 months after the PrEP administration. Conclusion. We provided a real-world experience model on the clinical efficacy of T/C PrEP in preventing severe COVID-19 during the Omicron wave through a comprehensive virological and immunological study. While waiting for the arrival of new monoclonal antibodies that can effectively neutralize the most recent variants, T/C PrEP remains the only viable strategy in the available armamentarium today to prevent COVID-19 complications in an extremely fragile population with suboptimal immune responses to COVID-19 vaccines.

14.
Oncotarget ; 15: 470-485, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39007281

RESUMO

microRNAs (miRNAs) are small, non-coding RNAs that regulate expression of multiple genes. MiR-193a-3p functions as a tumor suppressor in many cancer types, but its effect on inducing specific anti-tumor immune responses is unclear. Therefore, we examined the effect of our lipid nanoparticle (LNP) formulated, chemically modified, synthetic miR-193a-3p mimic (INT-1B3) on anti-tumor immunity. INT-1B3 inhibited distant tumor metastasis and significantly prolonged survival. INT-1B3-treated animals were fully protected against challenge with autologous tumor cells even in absence of treatment indicating long-term immunization. Protection against autologous tumor cell challenge was hampered upon T cell depletion and adoptive T cell transfer abrogated tumor growth. Transfection of tumor cells with our miR-193a-3p mimic (1B3) resulted in tumor cell death and apoptosis accompanied by increased expression of DAMPs. Co-culture of 1B3-transfected tumor cells and immature DC led to DC maturation and these mature DC were able to stimulate production of type 1 cytokines by CD4+ and CD8+ T cells. CD4-CD8- T cells also produced type 1 cytokines, even in response to 1B3-transfected tumor cells directly. Live cell imaging demonstrated PBMC-mediated cytotoxicity against 1B3-transfected tumor cells. These data demonstrate for the first time that miR-193a-3p induces long-term immunity against tumor development via modulation of the tumor microenvironment and induction of immunogenic cell death.


Assuntos
MicroRNAs , Nanopartículas , Microambiente Tumoral , MicroRNAs/genética , Animais , Microambiente Tumoral/imunologia , Camundongos , Humanos , Nanopartículas/química , Morte Celular Imunogênica/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Apoptose , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL , Imunidade Celular , Linfócitos T CD8-Positivos/imunologia , Feminino , Transfecção , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Citocinas/metabolismo , Lipossomos
15.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891741

RESUMO

Neutrophils are believed to play a role in the initial stages of paratuberculosis, and it has recently been demonstrated that vaccination can modulate their function via priming or through epigenetic and metabolic reprogramming (training). Modulation of the neutrophil response against Mycobacterium avium subspecies paratuberculosis (Map) through vaccination has been demonstrated in a rabbit model but not in ruminants. Therefore, in the present work, the effect of vaccination on the response of caprine neutrophils against Map was studied. Neutrophils were isolated from non-vaccinated (n = 7) and Gudair®-vaccinated goat kids (n = 7), before vaccination and 30 days post-vaccination. Then, several neutrophil functions were quantified ex vivo: cell-free and anchored neutrophil extracellular trap (NET) release, phagocytosis, and the differential expression of several cytokines and TLR2. The induction of cell-free NETosis and TLR2 expression by Map is reported for the first time. However, vaccination showed no significant effect on any of the functions studied. This suggests that the protection conferred by Gudair® vaccination is based on mechanisms that are independent of the neutrophil function modulation. Further research into the impact of alternative vaccination strategies or the paratuberculosis infection stage on ruminant neutrophil function could provide valuable insights into its role in paratuberculosis.

16.
Immun Ageing ; 21(1): 41, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909235

RESUMO

BACKGROUND: The magnitude and durability of cell-mediated immunity in older and severely frail individuals following coronavirus disease 2019 (COVID-19) vaccination remain unclear. A controlled immune response could be the key to preventing severe COVID-19; however, it is uncertain whether vaccination induces an anti-inflammatory cellular immune response. To address these issues, a 48-week-long prospective longitudinal study was conducted. A total of 106 infection-naive participants (57 long-term care facility [LTCF] residents [median age; 89.0 years], 28 outpatients [median age; 72.0 years], and 21 healthcare workers [median age; 51.0 years]) provided peripheral blood mononuclear cell (PBMC) samples for the assessment of spike-specific PBMC responses before primary vaccination, 24 weeks after primary vaccination, and three months after booster vaccination. Cellular immune responses to severe acute respiratory syndrome coronavirus 2 spike protein were examined by measuring interferon (IFN)-γ, tumor necrosis factor (TNF), interleukin (IL)-2, IL-4, IL-6, and IL-10 levels secreted from the spike protein peptide-stimulated PBMCs of participants. RESULTS: LTCF residents exhibited significantly lower IFN-γ, TNF, IL-2, and IL-6 levels than healthcare workers after the primary vaccination. Booster vaccination increased IL-2 and IL-6 levels in LTCF residents comparable to those in healthcare workers, whereas IFN-γ and TNF levels in LTCF residents remained significantly lower than those in healthcare workers. IL-10 levels were not significantly different from the initial values after primary vaccination but increased significantly after booster vaccination in all subgroups. Multivariate analysis showed that age was negatively associated with IFN-γ, TNF, IL-2, and IL-6 levels but not with IL-10 levels. The levels of pro-inflammatory cytokines, including IFN-γ, TNF, IL-2, and IL-6, were positively correlated with humoral immune responses, whereas IL-10 levels were not. CONCLUSIONS: Older and severely frail individuals may exhibit diminished spike-specific PBMC responses following COVID-19 vaccination compared to the general population. A single booster vaccination may not adequately enhance cell-mediated immunity in older and severely frail individuals to a level comparable to that in the general population. Furthermore, booster vaccination may induce not only a pro-inflammatory cellular immune response but also an anti-inflammatory cellular immune response, potentially mitigating detrimental hyperinflammation.

17.
Food Nutr Res ; 682024.
Artigo em Inglês | MEDLINE | ID: mdl-38863743

RESUMO

Background: The use of botanical medicine has been demonstrated as a potential strategy to manage or treat a variety of health issues. Terminalia chebula (Retz) fruit and Withania somnifera (L.) Dunal roots are important medicinal herbs described in Ayurveda and traditional therapy for diverse health benefits. Objective: This pilot study aimed to evaluate the immune function-enhancing potential of a unique blend of T. chebula fruit and W. somnifera root extracts, LN20189, in healthy men and women. Methods: Forty healthy volunteers (age: 35-60 years) were randomized into two groups receiving either LN20189 (500 mg per day) or a matched placebo over 28 consecutive days. The total T-cell population was the primary efficacy measure in this study. The secondary efficacy measures included counts of CD4, CD8, natural killer (NK) cells, serum levels of interleukin-2 (IL-2), interferon-gamma (IFN-γ), total immunoglobulin-G (IgG), and Immune Function Questionnaire (IFQ) scores. Safety parameter assessments were also conducted. Results: Post-trial, in LN20189-supplemented subjects, T cells, CD4, NK cells count, and the CD4:CD8 ratio were increased by 9.32, 10.10, 19.91, and 17.43%, respectively, as compared to baseline. LN20189 supplementation increased serum IFN-γ and IgG levels by 14.57 and 27.09% from baseline and by 13.98 and 21.99%, compared to placebo, respectively. Also, the IFQ scores in the LN20189 group were 84.68% (vs. baseline) and 69.44% (vs. placebo) lower at the end of the trial. LN20189 improved the study volunteers' cellular and humoral immune functions. Conclusion: In summary, LN20189 supplementation was found tolerable and improved the key cellular and humoral factors of the immune system and helped improve immune function of the trial volunteers.

18.
Front Pediatr ; 12: 1394006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884102

RESUMO

The instructional case is a pediatric haploidentical TCRαß+/CD19+ depleted allogeneic hematopoietic cell transplantation recipient who developed early onset CMV infection, which was complicated by resistant CMV (both UL97 and UL54) and successfully managed with maribavir and haploidentical CMV-specific T lymphocytes. Novel approaches to resistant CMV infection are reviewed and effective utilization of recent advances in diagnosis and management of resistant CMV in pediatric HCT are highlighted.

19.
Vaccines (Basel) ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932395

RESUMO

Therapeutic HPV vaccines that induce potent HPV-specific cellular immunity and eliminate pre-existing infections remain elusive. Among various candidates under development, those based on DNA constructs are considered promising because of their safety profile, stability, and efficacy. However, the use of electroporation (EP) as a main delivery method for such vaccines is notorious for adverse effects like pain and potentially irreversible muscle damage. Moreover, the requirement for specialized equipment adds to the complexity and cost of clinical applications. As an alternative to EP, lipid nanoparticles (LNPs) that are already commercially available for delivering mRNA and siRNA vaccines are likely to be feasible. Here, we have compared three intramuscular delivery systems in a preclinical setting. In terms of HPV-specific cellular immune responses, mice receiving therapeutic HPV DNA vaccines encapsulated with LNP demonstrated superior outcomes when compared to EP administration, while the naked plasmid vaccine showed negligible responses, as expected. In addition, SM-102 LNP M exhibited the most promising results in delivering candidate DNA vaccines. Thus, LNP proves to be a feasible delivery method in vivo, offering improved immunogenicity over traditional approaches.

20.
Annu Rev Immunol ; 42(1): 551-584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941604

RESUMO

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines. The capacity of these proteins to evade cellular immune responses by inhibiting cytokine activation is complemented by poxviruses' strategies to block natural killer cells and cytotoxic T cells, often through interfering with antigen presentation pathways. Mechanisms that target complement activation are also encoded by poxviruses. Virus-encoded proteins that target immune molecules and pathways play a major role in immune modulation, and their contribution to viral pathogenesis, facilitating virus replication or preventing immunopathology, is discussed.


Assuntos
Evasão da Resposta Imune , Infecções por Poxviridae , Poxviridae , Humanos , Poxviridae/imunologia , Poxviridae/fisiologia , Animais , Infecções por Poxviridae/imunologia , Citocinas/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Apresentação de Antígeno/imunologia , Interações Hospedeiro-Patógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA