Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Histol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105943

RESUMO

Insufficient evidence regarding how maternal undernutrition affects craniofacial bone development persists. With its unique focus on the impact of gestational protein restriction on calvaria and mandible osteogenesis, this study aims to fill, at least in part, this gap. Female mice were mated and randomized into NP (normal protein) or LP (low protein) groups. On the 18th gestational day (GD), male embryos were collected and submitted to microtomography (µCT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), PCR, and autophagy dynamic analyses. The study shows that the LP offspring exhibited lower body mass than the NP group, with µCT analysis revealing no volumetric differences in fetus's head. EDS analysis showed lower calcium and higher phosphorus percentages in mandibles and calvaria. SEM assessment evidenced higher hydroxyapatite crystal-like (HC) deposition on the calvaria surface in LP fetus. Conversely, lower HC deposition was observed on the mandible surface, suggesting delayed matrix mineralization in LP fetuses with a higher percentage of collagen fibers in the mandible bone. The autophagy process was reduced in the mesenchyme of LP fetuses. PCR array analysis of 84 genes revealed 27 genes with differential expression in the LP progeny-moreover, increased mRNA levels of Akt1, Mtor, Nfkb, and Smad1 in the LP offspring. In conclusion, the results suggest that gestational protein restriction anticipated bone differentiation in utero, before 18GD, where this process is reduced compared to the control, leading to the reduction in bone area at 15 postnatal day previously observed. These findings provide insights into the molecular and cellular mechanisms of mandible development and suggest potential implications for the Developmental Origins of Health and Disease (DOHaD).

2.
CNS Neurosci Ther ; 30(5): e14783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797980

RESUMO

AIMS: The molecular mechanism of short-sleep conditions on cognition remains largely unknown. This research aimed to investigate associations between short sleep, inflammatory biomarkers and cognitive function in the US population (NHANES data 2011-2014) and explore cellular mechanisms in mice. METHODS: Systemic immune-inflammation index (SII) was calculated using blood-cell based biomarkers. Further, we employed integrated bioinformatics and single-cell transcriptomics (GSE137665) to examine how short sleep exposure influenced the molecular pathways associated with inflammation in the brain. To explore the signaling pathways and biological processes of sleep deprivation, we carried out enrichment analyses utilizing the GO and KEGG databases. RESULTS: Population results showed that, compared with normal sleep group, severe short sleep was associated with lower cognitive ability in all the four tests. Moreover, a higher SII level was correlated with lower scores of cognitive tests. In mice study, elevated activation of the inflammatory pathway was observed in cell subgroups of neurons within the sleep deprivation and recovery sleep cohorts. Additionally, heightened expression of oxidative stress and integrated stress response pathways was noted in GABAergic neurons during sleep deprivation. CONCLUSION: This study contributed to the understanding of the influence of short sleep on cognitive function and its cellular mechanisms.


Assuntos
Biomarcadores , Cognição , Inflamação , Privação do Sono , Animais , Camundongos , Masculino , Privação do Sono/complicações , Privação do Sono/psicologia , Feminino , Humanos , Cognição/fisiologia , Adulto , Inflamação/metabolismo , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Adulto Jovem , Disfunção Cognitiva/metabolismo , Sono/fisiologia
3.
Curr Med Chem ; 31(32): 5178-5198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303534

RESUMO

Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.


Assuntos
Berberina , MicroRNAs , Neoplasias , Berberina/farmacologia , Berberina/química , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
Neural Regen Res ; 19(5): 1036-1044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862206

RESUMO

Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.

5.
Virology ; 589: 109953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043141

RESUMO

Chikungunya virus (CHIKV) causes persistent arthritis and neurological problems imposing a huge burden globally. The present study aims to understand the interaction mechanism of Chikungunya virus and CHIKV-capsid in Huh7 cells. The RNA-sequencing and qRT-PCR method was used for the transcript and gene profiles of CHIKV virus and CHIKV capsid alone. Transcriptional analysis showed capsid induced 1114 and 956 differentially expressed genes (DEGs) to be upregulated and downregulated respectively, while in virus, 933 genes were upregulated and 956 were downregulated. Total 202 DEGs were common in both capsid and virus; and nine were validated using qRT-PCR. Identified DEGs were found to be associated with metabolic pathways such as Diabetes, cardiac disease, and visual impairment. Further, knock-down study on one of the DEGs (MafA) responsible for insulin regulation showed low viral proteins expression suggesting a reduction in virus-infection. Thus, the study provides insight into the interplay of the virus-host factors assisting virus replication.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Capsídeo/metabolismo , Vírus Chikungunya/fisiologia , Replicação Viral , Proteínas do Capsídeo/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética
6.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140581

RESUMO

The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Estágios do Ciclo de Vida
7.
Mol Neurodegener ; 18(1): 82, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950311

RESUMO

The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Animais de Doenças , Tauopatias/genética , Tauopatias/metabolismo , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo
8.
Brain Sci ; 13(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626570

RESUMO

The impact of different meditation protocols on human health is explored at the cognitive and cellular levels. Preksha Dhyana meditation has been observed to seemingly affect the cognitive performance, transcriptome, and methylome of healthy and novice participant practitioners. In this study, we performed correlation analyses to investigate the presence of any relationships in the changes in cognitive performance and DNA methylation in a group of college students practicing Preksha Dhyana (N = 34). Nine factors of cognitive performance were assessed at baseline and 8 weeks postintervention timepoints in the participants. Statistically significant improvements were observed in six of the nine assessments, which were predominantly relating to memory and affect. Using Illumina 850 K microarray technology, 470 differentially methylated sites (DMS) were identified between the two timepoints (baseline and 8 weeks), using a threshold of p-value < 0.05 and methylation levels beyond -3% to 3% at every site. Correlation analysis between the changes in performance on each of the nine assessments and every DMS unveiled statistically significant positive and negative relationships at several of these sites. The identified DMS were in proximity of essential genes involved in signaling and other important metabolic processes. Interestingly, we identified a set of sites that can be considered as biomarkers for Preksha meditation improvements at the genome level.

9.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829966

RESUMO

Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.

10.
J Integr Complement Med ; 29(4): 224-233, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36749149

RESUMO

Introduction: The stress and psychological factors affect the human transcriptomic and epigenomic landscapes. Preksha Dhyana meditation (PM) was found to be effective, in novice healthy college student meditators, at the cognitive skills and transcriptomic levels. Recently published data showed that PM induced alterations at the transcriptome level in healthy and novice college students. Methods: To decipher potential mechanisms underlying the PM effect at the cellular level, array-based methylation analyses in peripheral blood were performed at baseline and 8 weeks postintervention in 34 participants. Results: Overall, 470 CpG sites were nominally differentially methylated (p ≤ 0.05 and change magnitude from ≥3% to ≤ -3%) between baseline and 8 weeks postintervention with 180 sites hypermethylated and 290 sites hypomethylated. Pathway analysis of the genes linked to the differentially methylated sites revealed the enrichment of several molecular and cellular signaling pathways, especially metabolic and brain function signaling pathways. Conclusions: Besides its beneficial effects on cognitive skills and transcriptome alterations, the current data indicate that PM meditation also affects the DNA methylation profile of novice and healthy college students 8 weeks postintervention. Clinical Trial Registration: NCT03779269.


Assuntos
Metilação de DNA , Meditação , Humanos , Ilhas de CpG , Metilação de DNA/genética , Perfilação da Expressão Gênica , Estudantes
11.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555142

RESUMO

The Orthodontic Tooth Movement (OTM) is allowed through a mediated cell/tissue mechanism performed by applying a force or a pair of forces on the dental elements, and the tooth movement is a fundamental requirement during any orthodontic treatment. In this regard, it has been widely shown that each orthodontic treatment has a minimum duration required concerning numerous factors (age, patient compliance, type of technique used, etc.). In this regard, the aim of the following revision of the literature is to give readers a global vision of principal microRNAs (miRNAs) that are most frequently associated with OTM and their possible roles. Previously published studies of the last 15 years have been considered in the PubMed search using "OTM" and "miRNA" keywords for the present review article. In vitro and in vivo studies and clinical trials were mainly explored. Correlation between OTM and modulation of several miRNAs acting through post-transcriptional regulation on target genes was observed in the majority of previous studied. The expression analysis of miRNAs in biological samples, such as gingival crevicular fluid (GCF), can be considered a useful tool for novel diagnostic and/or prognostic approaches and for new personalized orthodontic treatments able to achieve a better clinical response rate. Although only a few studies have been published, the data obtained until now encourage further investigation of the role of miRNA modulation during orthodontic treatment. The aim of this study is to update the insights into the role and impact of principal micro-RNAs (miRNAs) that are most frequently associated during OTM.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Técnicas de Movimentação Dentária/métodos , Líquido do Sulco Gengival , Assistência Odontológica
12.
Front Microbiol ; 13: 1022704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386669

RESUMO

Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.

13.
World J Clin Oncol ; 13(10): 762-778, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337313

RESUMO

Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.

14.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232349

RESUMO

Breast cancer is the second leading cause of death for women worldwide. While monotherapy (single agent) treatments have been used for many years, they are not always effective, and many patients relapse after initial treatment. Moreover, in some patients the response to therapy becomes weaker, or resistance to monotherapy develops over time. This is especially problematic for metastatic breast cancer or triple-negative breast cancer. Recently, combination therapies (in which two or more drugs are used to target two or more pathways) have emerged as promising new treatment options. Combination therapies are often more effective than monotherapies and demonstrate lower levels of toxicity during long-term treatment. In this review, we provide a comprehensive overview of current combination therapies, including molecular-targeted therapy, hormone therapy, immunotherapy, and chemotherapy. We also describe the molecular basis of breast cancer and the various treatment options for different breast cancer subtypes. While combination therapies are promising, we also discuss some of the challenges. Despite these challenges, the use of innovative combination therapy holds great promise compared with traditional monotherapies. In addition, the use of multidisciplinary technologies (such as nanotechnology and computer technology) has the potential to optimize combination therapies even further.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/tratamento farmacológico , Terapia Combinada , Feminino , Hormônios/uso terapêutico , Humanos , Imunoterapia , Recidiva Local de Neoplasia
15.
Front Endocrinol (Lausanne) ; 13: 916328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051395

RESUMO

Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa
16.
Saudi J Biol Sci ; 29(4): 2299-2305, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531197

RESUMO

Background: The human transcriptome across a variety of cell types and tissues are affected by stress and other psychological factors. Preksha Dhyana meditation (PM) is effective at improving cognitive skills in novice healthy college student meditators after 8 weeks of intervention, but the molecular and cellular mechanisms involved in these improvements are still largely unknown. Methods: In order to decipher potential mechanisms at the cellular level, transcriptomic profiling analyses, from peripheral blood, were performed at baseline and 8 weeks post-intervention in 18-paired participants (RNASeq). Results: At the transcriptomic level, 494 genes were nominally differentially expressed (p-value ≤ 0.05) between baseline and 8 weeks post-intervention. Our data showed that 136 genes were upregulated, while 358 genes were downregulated. These genes were enriched in several cellular pathways including innate and adaptive immunity, cell signaling, and other metabolic processes. Conclusions: Overall, our findings indicate that PM meditation affects gene expression patterns from whole blood in novice healthy college students. Improvements at the cognitive skills were also mirrored with changes at RNA expression profiling.

17.
Front Cell Infect Microbiol ; 12: 798978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463647

RESUMO

Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Proteínas de Choque Térmico HSP27 , Humanos , Vírus Junin/genética , Proteômica , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno
18.
Bioorg Chem ; 123: 105744, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349830

RESUMO

While interstrand crosslinks (ICLs) have been considered as one type of DNA damage in the past, there is mounting evidence suggesting that these highly cytotoxic lesions are processed differently by the cellular machinery depending upon the ICL structure. In this study, we examined the crosslinking ability of three mitomycins, the structure of the ICLs they produce and the cytotoxicity of the drugs toward three different cell lines. The drugs are: mitomycin C (1), decarbamoylmitomycin C (2), and a mitomycin-conjugate (3) whose mitosane moiety is linked to a N-methylpyrrole carboxamide. We found that, overall, both MC and compound 3 show strong similarities regarding their alkylation of DNA, while DMC alkylating behavior is markedly different. To gain further insight into the mode of action of these drugs, we performed high throughput gene expression and gene ontology analysis to identify gene expression and cellular pathways most impacted by each drug treatment in MCF-7 cell lines. We observed that the novel mitomycin derivative (3) specifically causes changes in the expression of genes encoding proteins involved in cell integrity and tissue structure. Further analysis using bioinformatics (IPA) indicated that the new derivative (3) displays a stronger downregulation of major signaling networks that regulate the cell cycle, DNA damage response and cell proliferation when compared to MC and DMC. Collectively, these findings demonstrate that cytotoxic mechanisms of all three drugs are complex and are not solely related to their crosslinking abilities or the structure of the ICLs they produce.


Assuntos
Adutos de DNA , Mitomicina , Alquilação , DNA/química , Dano ao DNA , Humanos , Mitomicina/química , Mitomicina/farmacologia , Mitomicinas/química , Mitomicinas/farmacologia
19.
Mol Neurobiol ; 59(6): 3512-3528, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347587

RESUMO

Alzheimer's disease (AD) is one of the most complex progressive neurological disorders involving degeneration of neuronal connections in brain cells leading to cell death. AD is predominantly detected among elder people (> 65 years), mostly diagnosed with the symptoms of memory loss and cognitive dysfunctions. The multifarious pathogenesis of AD comprises the accumulation of pathogenic proteins, decreased neurotransmission, oxidative stress, and neuroinflammation. The conventional therapeutic approaches are limited to symptomatic benefits and are ineffective against disease progression. In recent years, researchers have shown immense interest in the designing and fabrication of various novel therapeutics comprised of naturally isolated hybrid molecules. Hybrid therapeutic compounds are developed from the combination of pharmacophores isolated from bioactive moieties which specifically target and block various AD-associated pathogenic pathways. The method of designing hybrid molecules has numerous advantages over conventional multitarget drug development methods. In comparison to in silico high throughput screening, hybrid molecules generate quicker results and are also less expensive than fragment-based drug development. Designing hybrid-multitargeted therapeutic compounds is thus a prospective approach in developing an effective treatment for AD. Nevertheless, several issues must be addressed, and additional researches should be conducted to develop hybrid therapeutic compounds for clinical usage while keeping other off-target adverse effects in mind. In this review, we have summarized the recent progress on synthesis of hybrid compounds, their molecular mechanism, and therapeutic potential in AD. Using synoptic tables, figures, and schemes, the review presents therapeutic promise and potential for the development of many disease-modifying hybrids into next-generation medicines for AD.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Estresse Oxidativo
20.
Pathogens ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215201

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the protracted COVID-19 pandemic. Its high transmission rate and pathogenicity led to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing a higher accuracy for host-SARS-CoV-2 protein-protein interactions (PPIs). In this study, PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were trained on the PPI-MetaGO algorithm. PPI networks (PPINs) and a signaling pathway map of HICs with SARS-CoV-2 proteins were generated. Additionally, various U.S. food and drug administration (FDA)-approved drugs interacting with the potential HICs were identified. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient score (MCC) and 84.09% F1 score. Several host pathways were found to be altered, including calcium signaling and taste transduction pathway. Potential HICs could serve as an initial set to the experimentalists for further validation. The study also reinforces the drug repurposing approach for the development of host directed antiviral drugs that may provide a better therapeutic management strategy for infection caused by SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA