Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.378
Filtrar
1.
Am J Transl Res ; 16(7): 2963-2972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114718

RESUMO

OBJECTIVE: To investigate the possible mechanism of lncRNA GA binding protein transcription factor beta subunit 1 antisense RNA 1 (GABPB1-AS1) in cerebral ischemia/reperfusion (CI/R) injury. METHODS: RT-qPCR was applied to determine GABPB1-AS1 expression in oxygen-glucose deprivation/reoxygenation (OGD/R) cells. The targeting relationships between GABPB1-AS1 and miR-641, as well as between miR-641 and nuclear casein and cyclin-dependent kinase substrate 1 (NUCKS1) were examined by dual luciferase reporter assay. The protein expression of caspase-3, Bax, Bcl-2 and NUCKS1 was examined by western blot. Cell apoptosis was measured by flow cytometry (FCM) and western blot. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: GABPB1-AS1 was significantly elevated in SH-SY5Y cells under OGD/R. Downregulation of GABPB1-AS1 accelerated cell viability and suppressed cell apoptosis. GABPB1-AS1 silencing reduced ROS and MDA levels in OGD/R-treated cells. Furthermore, miR-641 inhibitor aggravated damage from OGD/R, but GABPB1-AS1 silencing notably attenuated this effect. NUCKS1 was proven to be a target gene of miR-641. CONCLUSION: GABPB1-AS1 silencing alleviated CI/R injury through the miR-641/NUCKS1 axis, indicating that GABPB1-AS1 might serve as a therapeutic target for CI/R injury.

2.
Cell Signal ; 122: 111331, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094671

RESUMO

Endoplasmic reticulum stress (ERS) and ferroptosis are linked to cerebral ischemia reperfusion injury (CIRI). The neuroprotective properties of 1α, 25-dihydroxyvitamin D3 (VitD3 or 1,25-D3) have been well established; however, the mechanism by which VitD3 treats CIRI through ERS and ferroptosis has not been examined. Hence, we developed middle cerebral artery occlusion/reperfusion (MCAO/R) model in SD rats to ascertain if VitD3 preconditioning mediates ERS and ferroptosis involving of p53 signaling. In this study, we observed that VitD3 can reduce infarction volume and cerebral edema, which leads to the improvement of nerve function. HE, Nissl and Tunel staining showed that VitD3 treatment significantly improved the morphology of neuronal cells and reduced their death. The expression and activation of Vitamin D receptor (VDR), PKR-like ER kinase (PERK), C/EBP-homologous protein (CHOP), p53, nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4) and reactive oxygen species (ROS) in the ischemic penumbral area were detected by real-time qPCR, Western-blotting and Elisa. The results showed that after VitD3 treatment, VDR increased, ERS-related indices (PERK, CHOP) significantly decreased and ferroptosis-related indices (Nrf2, GPX4) increased. As a VDRs antagonist, pyridoxal-5-phosphate (P5P) can partially block the neuroprotective effects of VitD3. Therefore, CIRI can induce ERS and ferroptosis in the ischemic penumbra area and VitD3 may ameliorate nerve damage in CIRI rats by up-regulating VDR, alleviating p53-associated ERS and ferroptosis.

3.
CNS Neurosci Ther ; 30(8): e14836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097918

RESUMO

INTRODUCTION: Cerebral ischemia-reperfusion injury (CIRI) is a common and debilitating complication of cerebrovascular diseases such as stroke, characterized by mitochondrial dysfunction and cell apoptosis. Unraveling the molecular mechanisms behind these processes is essential for developing effective CIRI treatments. This study investigates the role of RACK1 (receptor for activated C kinase 1) in CIRI and its impact on mitochondrial autophagy. METHODS: We utilized high-throughput transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) to identify core genes associated with CIRI. In vitro experiments used human neuroblastoma SK-N-SH cells subjected to oxygen and glucose deprivation (OGD) to simulate ischemia, followed by reperfusion (OGD/R). RACK1 knockout cells were created using CRISPR/Cas9 technology, and cell viability, apoptosis, and mitochondrial function were assessed. In vivo experiments involved middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in rats, evaluating neurological function and cell apoptosis. RESULTS: Our findings revealed that RACK1 expression increases during CIRI and is protective by regulating mitochondrial autophagy through the PINK1/Parkin pathway. In vitro, RACK1 knockout exacerbated cell apoptosis, while overexpression of RACK1 reversed this process, enhancing mitochondrial function. In vivo, RACK1 overexpression reduced cerebral infarct volume and improved neurological deficits. The regulatory role of RACK1 depended on the PINK1/Parkin pathway, with RACK1 knockout inhibiting PINK1 and Parkin expression, while RACK1 overexpression restored them. CONCLUSION: This study demonstrates that RACK1 safeguards against neural damage in CIRI by promoting mitochondrial autophagy through the PINK1/Parkin pathway. These findings offer crucial insights into the regulation of mitochondrial autophagy and cell apoptosis by RACK1, providing a promising foundation for future CIRI treatments.


Assuntos
Autofagia , Mitocôndrias , Proteínas Quinases , Receptores de Quinase C Ativada , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Humanos , Ratos , Apoptose/fisiologia , Autofagia/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias , Neuroproteção/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos Sprague-Dawley , Receptores de Quinase C Ativada/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
BMC Complement Med Ther ; 24(1): 293, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090706

RESUMO

BACKGROUND: Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS: Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS: Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS: Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.


Assuntos
Isquemia Encefálica , Glucosídeos , Regeneração Nervosa , Fenóis , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Glucosídeos/farmacologia , Fenóis/farmacologia , Ratos , Masculino , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fatores de Crescimento Neural/metabolismo , Modelos Animais de Doenças , Receptores Notch/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurogênese/efeitos dos fármacos
5.
Int Immunopharmacol ; 140: 112800, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096875

RESUMO

Oltipraz (OPZ) is a synthetic dithiolethione and is considered a novel activator of nuclear factor E2-related factor 2 (Nrf2). Increasing evidence indicates that Nrf2 protects against cerebral ischemia/reperfusion (I/R) injury by antagonizing ferroptosis and lipid peroxidation. However, the protective effects of OPZ on cerebral I/R injury remain to be elucidated. We investigated the in vitro and in vivo neuroprotective effects of OPZ. Mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) to construct an in vivo model and PC12 cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) to establish an in vitro model. OPZ administration reduced the infarct volume and brain water content, and alleviated the neurological deficit of MCAO/R mice. Moreover, OPZ ameliorated MCAO/R-induced oxidative stress by decreasing the levels of 4-HNE and MDA and increasing the activities of SOD and GSH. We also found that OPZ ameliorated MCAO/R-induced ferroptosis by increasing SLC7A11 and GPX4 protein expression and downregulating ACSL4 protein expression. Similarly, the in vitro results revealed that OGD/R-induced oxidative stress and ferroptosis. Finally, mechanistic analysis revealed that OPZ significantly upregulated the Nrf2 expression and Nrf2 knockout (Nrf2 KO) abolished the OPZ-mediated protective effects. Taken together, these findings demonstrate that OPZ ameliorates cerebral I/R injury by suppressing the oxidative stress and ferroptosis.

6.
Neuromolecular Med ; 26(1): 33, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138706

RESUMO

The newly identified estrogen receptor, G protein-coupled receptor 30 (GPR30), is prevalent in the brain and has been shown to provide significant neuroprotection. Recent studies have linked ferroptosis, a newly characterized form of programmed cell death, closely with cerebral ischemia-reperfusion injury (CIRI), highlighting it as a major contributing factor. Consequently, our research aimed to explore the potential of GPR30 targeting in controlling neuronal ferroptosis and lessening CIRI impacts. Results indicated that GPR30 activation not only improved neurological outcomes and decreased infarct size in a mouse model but also lessened iron accumulation and malondialdehyde formation post-middle cerebral artery occlusion (MCAO). This protective effect extended to increased levels of Nrf2 and GPX4 proteins. Similar protective results were replicated in PC12 cells subjected to Oxygen Glucose Deprivation and Reoxygenation (OGD/R) using the GPR30-specific agonist G1. Importantly, inhibition of Nrf2 with ML385 curtailed the neuroprotective effects of GPR30 activation, suggesting that GPR30 mitigates CIRI primarily through inhibition of neuronal ferroptosis via upregulation of Nrf2 and GPX4.


Assuntos
Ferroptose , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Células PC12 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos , Masculino , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças
7.
Microcirculation ; : e12880, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120967

RESUMO

OBJECTIVE: Intragastric administration of ninjin'yoeito (NYT), a traditional Japanese herbal medicine, reportedly prevents the decrease in baseline cerebral blood flow (CBF) in the cortex following gastric administration of water. We investigated the effect of NYT on baseline and dynamic changes in cerebral cortical arteriole diameter. METHODS: Urethane-anesthetized mice were intragastrically administered 1 g/kg NYT or distilled water (DW). The artery in the left parietal cortex was imaged using two-photon microscopy. The baseline diameter of penetrating arterioles was measured before and 50-60 min after administration. Dynamic CBF and arteriole diameter changes before, during, and after transient occlusion of the left common carotid artery were measured approximately 10 min after administration. RESULTS: DW decreased the baseline diameter of the penetrating arterioles, whereas NYT did not. During occlusion, the increase in penetrating arteriole diameter was comparable for DW and NYT; however, during reperfusion, the return to preocclusion diameter was slower for NYT than DW. Laser-speckle contrast imaging confirmed that CBF, although comparable during occlusion, was higher during reperfusion for NYT than DW. CONCLUSIONS: These results suggest that NYT attenuates vasoconstriction in penetrating arterioles after intragastric administration and during cerebral reperfusion, contributing to CBF regulation.

8.
Brain Res Bull ; 216: 111043, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134096

RESUMO

OBJECTIVE: This study aimed to further elucidate the mechanism of ginsenoside Rg1 in the treatment of cerebral ischemia-reperfusion. METHODS: In this study, we observed the apoptosis of RM cells (microglia) after oxygen-glucose deprivation/reoxygenation (OGD/R) modeling before and after Rg1 administration, changes in mitochondrial membrane potential, changes in the content of Reactive oxygen species (ROS) and inflammatory vesicles NLR Family Pyrin Domain Containing 3 (NLRP3), and the expression levels of autophagy-related proteins, inflammatory factors, and apoptosis proteins. We further examined the pathomorphological changes in brain tissue, neuronal damage, changes in mitochondrial morphology and mitochondrial structure, and the autophagy-related proteins, inflammatory factors, and apoptosis proteins expression levels in CI/RI rats before and after administration of Rg1 in vivo experiments. RESULTS: In vitro experiments showed that Rg1 induced mitochondrial autophagy, decreased mitochondrial membrane potential, and reduced ROS content thereby inhibiting NLRP3 activation, decreasing secretion of inflammatory factors and RM cell apoptosis by regulating the PTEN induced putative kinase 1(Pink1) /Parkin signaling pathway. In vivo experiments showed that Rg1 induced mitochondrial autophagy, inhibited NLRP3 activation, improved inflammatory response, and reduced apoptosis by regulating the Pink1/Parkin signaling pathway, and Rg1 significantly reduced the area of cerebral infarcts, improved the pathological state of brain tissue, and attenuated the neuronal damage, thus improving cerebral ischemia/reperfusion injury in rats. CONCLUSION: Our results suggest that ginsenoside Rg1 can ameliorate cerebral ischemia-reperfusion injury by modulating Pink1/ Parkin-mediated mitochondrial autophagy in microglia and inhibiting microglial NLRP3 activation.

9.
CNS Neurosci Ther ; 30(8): e70000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161158

RESUMO

AIMS: This study aimed to explore the effects of long noncoding RNA (lncRNA) H19 knockdown on angiogenesis and blood-brain barrier (BBB) integrity following cerebral ischemia/reperfusion (I/R) and elucidate their underlying regulatory mechanisms. METHODS: A middle cerebral artery occlusion/reperfusion model was used to induce cerebral I/R injury. The cerebral infarct volume and neurological impairment were assessed using 2,3,5-triphenyl-tetrazolium chloride staining and neurobehavioral tests, respectively. Relevant proteins were evaluated using western blotting and immunofluorescence staining. Additionally, a bioinformatics website was used to predict the potential target genes of lncRNA H19. Finally, a rescue experiment was conducted to confirm the potential mechanism. RESULTS: Silencing of H19 significantly decreased the cerebral infarct volume, enhanced the recovery of neurological function, mitigated BBB damage, and stimulated endothelial cell proliferation following ischemic stroke. Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is predicted to be a potential target gene for lncRNA H19. H19 knockdown increased IMP2 protein expression and IMP2 inhibition reversed the protective effects of H19 inhibition. CONCLUSION: Downregulation of H19 enhances angiogenesis and mitigates BBB damage by regulating IMP2, thereby alleviating cerebral I/R injury.


Assuntos
Infarto da Artéria Cerebral Média , AVC Isquêmico , RNA Longo não Codificante , Proteínas de Ligação a RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neovascularização Fisiológica/fisiologia , Camundongos , Técnicas de Silenciamento de Genes/métodos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Camundongos Endogâmicos C57BL , Angiogênese
10.
Heliyon ; 10(14): e34986, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148973

RESUMO

Background: Electroacupuncture (EA) has been shown to promote functional recovery after cerebral ischemia-reperfusion (I/R) injury. However, the contribution of mitochondrial dynamics to recovery remains unclear. The aim of this study was to investigate whether mitochondrial dynamics are involved in the effects of EA on cerebral I/R injury. Methods: The rats with cerebral I/R injury were established by the middle cerebral artery occlusion/reperfusion. Subsequently, EA was applied to Baihui (GV20) and Dazhui (GV14) acupoints, with 2 Hz/5 Hz in frequency, 1.0 mA in intensity, 20 min each time, once a day for seven consecutive days. The therapeutic outcomes were assessed by modified neurological severity score (mNSS), 2,3,5-Triphenyte-trazolium chloride (TTC) staining, and hematoxylin-eosin (HE) staining. Mitochondrial morphology was observed under transmission electron microscopy. Adenosine triphosphate (ATP) content and ATP synthases (ATPases) activity were evaluated to measure mitochondrial function using ELISA. Finally, mitochondrial dynamics-related molecules, including dynamin-related protein 1 (Drp1), fission 1 (Fis1), mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic atrophy 1 (OPA1), were detected by Western blot and immunofluorescence staining. Results: Cerebral I/R injury induced neurological dysfunction, cerebral infarction and neuronal injury, all of which were ameliorated by EA. And EA improved mitochondrial morphology and function. Moreover, EA altered the balance of mitochondrial dynamics. Specifically, the data showed a significant decrease in the expression of Drp1 and Fis1, leading to the inhibition of mitochondrial fission. Additionally, Mfn1, Mfn2 and Opa1, which are related to mitochondrial fusion, were effectively promoted after EA treatment. However, sham EA did not show any neuroprotective effects in rats with cerebral I/R injury. Conclusions: In summary, our study indicates that the balance of mitochondrial dynamics is crucial for EA therapy to treat cerebral I/R injury.

11.
Int Immunopharmacol ; 141: 112915, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146784

RESUMO

Cerebral ischemia-reperfusion injury (CI/RI) is a leading cause of disability and mortality worldwide, with limited therapeutic options available. Erianin, a natural compound derived from traditional Chinese medicine, has been reported to possess anti-inflammatory and neuroprotective properties. This study aimed to investigate the therapeutic potential of Erianin in CI/RI and elucidate its underlying mechanisms. Network pharmacology analysis predicted that Erianin could target the PI3K/AKT pathway, which are closely associated with CI/RI. In vivo experiments using a rat model of CI/RI demonstrated that Erianin treatment significantly alleviated neurological deficits, reduced infarct volume, and attenuated neuronal damage. Mechanistically, Erianin inhibited microglial cell polarization towards the pro-inflammatory M1 phenotype, as evidenced by the modulation of specific markers. Furthermore, Erianin suppressed the expression of pro-inflammatory cytokines and mediators, such as TNF-α, IL-6, and COX-2, while enhancing the production of anti-inflammatory factors, including Arg1, CD206, IL-4 and IL-10. In vitro studies using oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated microglial cells corroborated the anti-inflammatory and anti-apoptotic effects of Erianin. Notably, Erianin inhibited the NF-κB signaling pathway by inhibiting p65 phosphorylation and preventing the nuclear translocation of the p65 subunit. Collectively, these findings suggest that Erianin represents a promising therapeutic candidate for CI/RI by targeting microglial cell polarization and inflammation.

12.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148053

RESUMO

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Assuntos
Apoptose , Sobrevivência Celular , Metilidrazinas , Mitocôndrias , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Metilidrazinas/farmacologia , Metilidrazinas/uso terapêutico , Isquemia Encefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
13.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39115562

RESUMO

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Assuntos
Inflamação , Pró-Proteína Convertase 9 , Piroptose , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Piroptose/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulação para Baixo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
14.
Front Pharmacol ; 15: 1449452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139639

RESUMO

Background: The Chinese ethnic medicine Jie-Du-Huo-Xue Decoction (JDHXD) is used to alleviate neuroinflammation in cerebral ischemia (CI). Our previous studies have confirmed that JDHXD can inhibit microglial pyroptosis in CI. However, the pharmacological mechanism of JDHXD in alleviating neuroinflammation and pyroptosis needs to be further elucidated. New research points out that there is an interaction between autophagy and inflammasome NLRP3, and autophagy can help clear NLRP3. The NLRP3 is a key initiator of pyroptosis and autophagy. The effect of JDHXD promoting autophagy to clear NLRP3 to inhibit pyroptosis on cerebral ischemia-reperfusion inflammatory injury is currently unknown. We speculate that JDHXD can inhibit pyroptosis in CI by promoting autophagy to clear NLRP3. Methods: Chemical characterization of JDHXD was performed using LC-MS. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in SD rats. Neurological deficits, neuron damage, and cerebral infarct volume were evaluated. Western Blot and immunofluorescence were used to detect neuronal pyroptosis and autophagy. Results: 30 possible substance metabolites in JDHXD medicated serum were analyzed by LC-MS (Composite Score > 0.98). Furthermore, JDHXD protects rat neurological function and cerebral infarct size after CI. JDHXD inhibited the expression of pyroptosis and autophagy after CI. Our western blot and immunofluorescence results showed that JDHXD treatment can reduce the expression of autophagy-related factors ULK1, beclin1, and LC3-Ⅱ. The expression of NLRP3 protein was lower in the JDHXD group than in the I/R group. Compared with the I/R group, the expressions of pyroptosis-related factors caspase-1 P 10, GSDMD-NT, IL-18, and IL-1ß decreased in the JDHXD group. Furthermore, we observed an unexpected result: immunofluorescence demonstrated that Gasdermin D (GSDMD) was significantly absent in the infarct core, and highly expressed in the peri-infarct and contralateral cerebral hemispheres. This finding challenges the prevailing view that GSDMD is elevated in the ischemic cerebral hemisphere. Conclusion: JDHXD inhibited pyroptosis and autophagy after MCAO/R. JDHXD suppressed pyroptosis and autophagy by inhibiting NLRP3, thereby alleviating CI. In addition, we present a different observation from previous studies that the expression of GSDMD in the infarct core was lower than that in the peri-infarct and contralateral non-ischemic hemispheres on day 3 of CI.

15.
Phytomedicine ; 133: 155881, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059267

RESUMO

BACKGROUND: The combination of Astragalus membranaceus and Carthamus tinctorius (AC) exhibits significant therapeutic effects in cerebral ischemia/reperfusion injury (CIRI). Understanding the metabolic characteristics of brain microregions and disturbances in tissues and systemic circulation is crucial for elucidating the mechanisms of CIRI and the therapeutic benefits of AC. However, in situ metabolic regulation of the complex brain structure has not been adequately studied, and the therapeutic mechanism of AC requires immediate clarification. PURPOSE: The present study aimed to unveil the specific metabolic reprogramming of CIRI at systemic and microregional levels, identify key metabolic pathways and metabolites, and elucidate the therapeutic mechanisms of AC. METHODS: Air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), a newly developed technique, was used to investigate metabolites in brain microregions. Hematoxylin-eosin, Nissl, and immunofluorescence staining were performed to visualize the microscopic changes associated with spatial metabolism. A comprehensive metabolomics study was conducted on serum, brain tissue, and microregions, along with neurological assessments, cerebral infarction measurements, and Evans blue experiments, to assess the systemic and local metabolic effects of AC treatment for CIRI. RESULTS: AC significantly reduced neurological damage, minimized infarct size, and repaired blood-brain barrier damage in CIRI rats. AFADESI-MSI demonstrated that the metabolic imbalance caused by CIRI primarily occurs in the cerebral cortex, hippocampus, caudate putamen, thalamus, cerebellar cortex, and fiber tract regions. Significant changes in 16 metabolites were observed in these regions, corresponding to neuron damage, glial cell activation, and neural repair. 20 metabolites from serum and 4 from brain tissue varied significantly with the sham group. Comprehensive metabolomics analysis indicated a close relationship among serum, tissue, and microregional metabolism. CIRI-induced systemic and localized metabolic disorders involve 14 metabolic pathways. AC conferred therapeutic benefits in CIRI by reversing various metabolic imbalances. CONCLUSION: AFADESI-MSI efficiently visualized brain microregion metabolism. Comprehensive metabolomics analysis revealed detailed insights into the specific metabolic reprogramming in CIRI and the therapeutic impacts of AC. AC demonstrated significant clinical potential as an adjunct therapy to existing CIRI treatments.

16.
Neurochem Int ; 178: 105806, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025366

RESUMO

It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45ß. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45ß pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45ß signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45ß pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45ß signaling pathway to promote neuroplasticity.


Assuntos
Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I , Traumatismo por Reperfusão , Transdução de Sinais , Proteína Smad2 , Animais , Masculino , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Traumatismo por Reperfusão/metabolismo , Recuperação de Função Fisiológica/fisiologia , Proteína Duplacortina , Proteína Smad3/metabolismo , Isquemia Encefálica/metabolismo , Meio Ambiente , Infarto da Artéria Cerebral Média/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas GADD45 , Antígenos de Diferenciação
17.
Heliyon ; 10(13): e33821, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040387

RESUMO

Introduction: & Objective: Cerebral ischemia/reperfusion (I/R) injury, the second cause of death globally, involves increased NMDA receptor activity leading to neuronal damage due to excessive sodium and calcium ion entry. Therefore, targeting NMDA receptor may potentially reduce cell death induced by brain injury. Our study aimed to investigate the role of NMDA receptors in hippocampal neuronal activity induced by I/R. Methods: In this study, Wistar rats were divided into four groups: sham, I/R, I/R + MK801, and I/R + NMDA. Cerebral I/R injury was induced by temporarily occluding the common and vertebral carotid arteries, followed by reperfusion. MK801 or NMDA was administered to the rats after a specific reperfusion time. Neuronal density and cell morphology in the hippocampal CA1 region were assessed using Nissl and H&E staining. The expression of BDNF, p-CREB, and c-fos was evaluated through Western blot analysis. Additionally, neuronal activity in CA1 pyramidal neurons were examined using single unit recording technique. Results: Our results showed that cerebral I/R injury caused significant damage to CA1 pyramidal neurons compared to the sham group. However, treatment with MK-801 improved hippocampal cell survival compared to the I/R group. Furthermore, MK-801 administration in I/R rats increased BDNF, c-fos, and p-CREB levels while decreasing cleaved caspase-3 activity compared to the I/R group. Additionally, electrophysiological data showed that MK-801 increased firing rates of CA1 pyramidal neurons during the reperfusion phase. Conclusion: MK-801 shows promise as a therapeutic agent for cerebral I/R injury by enhancing cell survival, upregulating neuroplasticity factors, and increasing firing rates of CA1 pyramidal neurons. It exerts a specific protective effect against cerebral I/R injury.

18.
Cell Biochem Biophys ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043960

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is a significant pathological process in stroke, characterized by neuronal cell death and neurological dysfunction. Metformin, commonly used for diabetes management, has been noted for its neuroprotective properties, though its effects on CIRI and the mechanisms involved remain unclear. This study explored the neuroprotective impact of metformin on CIRI, focusing on its potential to modulate the c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38) signaling pathways. Using in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R) in neuronal cells and in vivo mouse models of middle cerebral artery occlusion (MCAO), the effects of metformin were assessed. Cell viability was measured with Cell Counting Kit-8 (CCK-8), protein expression via Western Blot (WB), and apoptosis through flow cytometry. The extent of brain injury in mice was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining, while JNK and p38 activation statuses were detected through WB and phospho-JNK (p-JNK) immunofluorescence staining. Results showed that metformin significantly improved the viability of HT22 cells post-OGD/R, reduced apoptosis, and decreased OGD/R-induced phosphorylation of JNK and p38 in vitro. In vivo, metformin treatment notably reduced brain infarct volume in MCAO mice, inhibited p-p38 and p-JNK expression, and enhanced neurological function. These findings suggest that metformin exerts neuroprotective effects against CIRI by modulating the JNK/p38 signaling pathway, highlighting its potential therapeutic value in treating cerebral ischemia-reperfusion injury and paving the way for clinical applications.

19.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008165

RESUMO

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Assuntos
Apoptose , Autofagia , Proteína 3 Ligante de Ácido Graxo , Mitocôndrias , Neurônios , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Apoptose/fisiologia , Autofagia/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Mitocôndrias/metabolismo , Masculino , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteína 3 Ligante de Ácido Graxo/genética , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estresse Oxidativo/fisiologia
20.
Trends Pharmacol Sci ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019763

RESUMO

Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA