Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 19762, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187556

RESUMO

Maize cultivation is under the growing threat of charcoal rot (Macrophomina phaseolina). Chemical control of diseases imparts serious health hazards to humans and the ecosystem. Biochar as an alternative disease management approach has been under consideration of the researchers for some time now. The biochar utilized in this study was derived from maize stalks and cobs. Crystallographic structure, inorganic minerals content and size of maize biochar were analyzed by powder X-ray diffractometer, while scanning electron microscopy revealed rough, irregular, tubular structure of the biochar surface. EDX spectra revealed that the maize biochar composition was dominated by 'C' followed by 'O'. The current study was designed to determine the synergistic effect of maize biochar (MB), and biocontrol agent (BCA) Trichoderma viride as soil amendments on the suppression of M. phaseolina. In vitro bioassays were conducted to check the efficiency of antagonistic effect of Trichoderma spp., in combination with maize biochar. On the basis of maximum mycelial growth inhibition T. viride was selected for a glasshouse experiment. Maize plants were grown in pots containing a mixture of soil with MB at application at the rate of 3 and 6% (v/v) separately, associated with or without T. viride. Treatments amended with 3% MB inoculated with M. phaseolina significantly reduced the percentage disease severity index by 40%. While in the presence of T. viride, 3% MB showed maximum disease suppression and a minimum percentage severity index i.e. 60 and 20%, respectively. Highest nitrogen contents were 18.4 g kg-1 observed in treatment 6% MB, while highest phosphorus and potassium contents were 3.11 and 15.2 g kg-1, respectively in the treatment with 3% MB. Conclusively, the effect of variable concentrations of maize biochar and T. viride as soil amendment was evident on the development of charcoal rot, growth and physiology of maize plants. According to the available literature, our report is the first on the implementation of biochar in synergism with T. viride to suppress the charcoal rot in maize.


Assuntos
Ascomicetos , Carvão Vegetal , Doenças das Plantas , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Hypocreales/metabolismo , Solo/química
2.
Plant Dis ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907521

RESUMO

The primary controls for charcoal rot in soybean, caused by the fungal pathogen Macrophomina phaseolina, are to avoid drought stress and to plant a moderately resistant cultivar. The effects of irrigation and cultivar were determined in 2011 and 2013 at the Lon Mann Cotton Research Station, Marianna, AR. Four soybean cultivars (Hutcheson, Osage, Ozark, and R01581F), were planted in plots with or without added M. phaseolina inoculum and subjected to three furrow irrigation regimes: full season irrigation (Full), irrigation terminated at R5 (CutR5), and non-irrigated (NonIrr). Normalized difference vegetative index (NDVI) was measured at R3 and R6. At harvest, plants and yields were collected. Roots and stems were split and the extent of visible colonization by M. phaseolina microsclerotia was assessed in the roots with a 1-5 scale (RSS) and the percent plant height stem discoloration (PHSD) measured. Precipitation in September and October was 54 and 65% below the 30-year average in 2011 and 2013, respectively. The CutR5 irrigation treatment resulted in one less irrigation than Full each year, but CutR5 NDVI's at R6 and yields were significantly lower than those with Full and not significantly different than those of NonIrr. The CutR5 RSS ratings were greater than either Full or NonIrr. Plant colonization by M. phaseolina was negatively correlated to yield in 2011 but not in 2013. No premature plant death caused by charcoal rot was observed in either year. These results indicated that late season drought stress may be more important to charcoal rot development than drought stress throughout the season, but other factors are needed to trigger early plant death and subsequent yield losses observed in grower fields.

3.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587793

RESUMO

The soybean production area is expanding in Uzbekistan. Soybeans were planted on an area of 10 thsd ha and the harvest amounted to 30 thsd metric tons in 2023 (IPAD, https://ipad.fas.usda.gov/countrysummary). Macrophomina phaseolina (Mp) is a soil- and seed-borne fungal pathogen causing economically important diseases of legume crops (Pennerman et al. 2024). Drought stress and a warm climate are favorable to this pathogen (Irulappan et al. 2022). Under these conditions, its microsclerotia survive for a longer period and become more virulent (Chamorro et al. 2015). In August 2022, typical symptoms of charcoal rot were observed in about 25% of "Orzu" soybean cultivar affecting 6 ha located on the experimental base "Durmon" of our institute. Diseased plants displayed the following charcoal rot symptoms: leaves turn yellow, then wilt, die, and remain attached to the plant; the lower portion of the stem and tap root have a light gray or ashy black discoloration; tiny black specks on the lower stem and root; after splitting the stem, it has the appearance of fine charcoal powder. In order to determine the causal agent of these symptoms, a total of 17 diseased plants were collected from focal lesions in soybean plantings. From each plant, twelve sections of stem and root tissue were selected, cut into small 5-mm pieces, and surface sterilized with 1% sodium hypochlorite for four minutes, then rinsed three times with sterile distilled water. The disinfected tissues were dried on sterile filter paper for 5 min and placed on PDA Petri plates, which were incubated in an incubation chamber for 3 days (16 h light (26oC) and 8 h dark (18oC)). Fungi were subsequently subcultured on PDA and incubated for 7 days to obtain pure cultures. Six monohyphal colonies were purified. The colonies showed dense growth, with a gray initial mycelium becoming darker with aging. After 8 days on PDA, black-colored microsclerotia with spherical to oblong shapes were observed. On average, they measured 60 µm in width and 130 µm in length (n = 30). From six isolated monohyphal colonies, one has been chosen for molecular-genetic identification. Molecular-genetic analysis was conducted by amplification and sequencing of the ITS region with the ITS1 and ITS4 primers (White et al. 1990). The resulting sequence was deposited in the NCBI database under accession number OQ073450. After BLAST analysis (Altschul et al. 1990) it was 100% identical with the reference sequences of Mp (accession MT039671, MT039663 and MH496040) isolated in sugar beet, maize and sunflower, respectively, from Serbia. In order to verify the pathogenicity, soybean seedlings (cv. Orzu) were dipped into spore suspension (1 × 107 spores/ml) of sequenced strain R-17 for 1 minute and transferred to a 15 cm diameter plastic pot with 350 g of sterilized soil mix. After 25 days, the inoculated plants showed classic charcoal rot symptoms, while the control plants remained healthy. The pathogen was successfully reisolated from the infected seedlings onto PDA, fulfilling Koch's postulate. The identity of the re-isolated strain was confirmed by morphological features and sequencing of the ITS region. It should be noted that in Uzbekistan, Mp has not been documented in any plants. Therefore, according to our knowledge, this is the first report of this fungus affecting soybean plants in Uzbekistan. Since molecular-genetic analysis of the R-17 strain showed clustering with strains from Serbia, we speculate that there may have been a recent introduction of Mp from Serbia into Uzbekistan. This assumption is additionally confirmed by the fact that Serbia is the largest seed exporter in Uzbekistan. The increase in charcoal rot disease poses a major challenge to soybean production in Uzbekistan. Understanding the genetic diversity of Mp can be utilized to manage this disease, improve soybean yield, and help soybean breeding programs in Uzbekistan.

4.
Plant Dis ; 108(2): 302-310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37773328

RESUMO

The effects of crop rotation and winter cover crops on soybean yield and colony-forming (CFU) units of Macrophomina phaseolina, the causal agent of charcoal rot (CR), are poorly understood. A field trial was conducted from 2011 to 2015 to evaluate (i) the impact of crop rotation consisting of soybean (Glycine max [L.] Merr.) following cotton (Gossypium hirsutum L.), soybean following corn (Zea mays L.), and soybean following soybean over a 2-year rotation and its interaction with cover crop and (ii) the impact of different cover crops on a continuous soybean crop over a 5-year period. This trial was conducted in a field with 10 subsequent years of cover crop and rotation treatments. Cover crops consisted of winter wheat (Triticum aestivum L.) and Austrian winter pea (Pisum sativum L. subsp. sativum var. arvense), hairy vetch (Vicia villosa Roth), and a fallow treatment was evaluated with and without poultry litter application (bio-cover). Tissue CFU of M. phaseolina varied significantly between crop rotation treatments: plots where soybean was grown following cotton had significantly greater tissue CFU than plots following soybean. Poultry litter and hairy vetch cover cropping caused increased tissue CFU, though this effect differed by year and crop rotation treatment. Soil CFU in 2015 was substantially lower compared with 2011. However, under some crop rotation sequences, plots in the fallow treatment had significantly greater soil CFU than plots where hairy vetch and wheat was grown as a cover crop. Yield was greater in 2015 compared with 2011. There was a significant interaction of the previous crop in the rotation with year, and greater yield was observed in plots planted following cotton in the rotation in 2015 but not in 2011. The result from the continuous soybean planted over 5 years showed that there were no significant overall effects of any of the cover crop treatments nor was there interaction between cover crop treatment and year on yield. The lack of significant interaction between crop rotation and cover crop and the absence of significant differences between cover crop treatments in continuous soybean planting suggest that cover crop recommendations for midsouthern soybean growers may need to be independent of crop rotation and be based on long-term crop needs.


Assuntos
Ascomicetos , Solo , Agricultura , Glycine max , Produtos Agrícolas , Zea mays , Produção Agrícola
5.
Phytopathology ; 114(1): 177-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486162

RESUMO

Sweet sorghum (Sorghum bicolor) lines M81-E and Colman were previously shown to differ in responses to Fusarium thapsinum and Macrophomina phaseolina, stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI, M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following M. phaseolina inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.


Assuntos
Sorghum , Sorghum/genética , Doenças das Plantas/genética , Ácidos Cumáricos/metabolismo , Metabolismo Secundário , Grão Comestível
6.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037210

RESUMO

In 2021, several dry bean (Phaseolus vulgaris L.) plants at the mid-seed-fill growth stage displaying wilting, chlorosis of the leaves and reduced vigor were collected near the Pembina - Emerson Border of Manitoba, Canada and North Dakota, USA. When symptomatic plants were examined, gray to dark brown discoloration was observed on the lower stem and the roots. Afterwards, brown to black discoloration was noticed on stem and root sections. Root and lower stem pieces (1 to 2 cm) from affected plants were surface sterilized with 70 % ethanol, followed by 1% NaOCl, rinsed twice in sterilized water, air dried on sterilized filter papers, and placed on potato dextrose agar (PDA) amended with 1 mg/mL of streptomycin sulfate. The PDA plates were incubated at 28°C with 12 h light/12 h dark for 10 days. The growing hyphae were transferred using the hyphal tip method to new PDA plates. Growing cultures were initially hyaline and turned from light gray to dark brown or black with age. Abundant dark and spherical to oblong shaped sclerotia with an average diameter of 97.9 µm (range: 66.8 to 143.5 µm, n =30) formed on the pure cultures 7 days after incubation. Additional pure culture was obtained through an isolation of a single microsclerotium followed by a single hyphal tip transfer. One isolate was identified as Macrophomina phaseolina based on morphological characteristics (Smith and Wyllie 1999). The morphological identity was confirmed by sequencing the rDNA internal transcribed spacer (ITS) region with universal primers ITS1/ITS4 (White et al. 1990) and calmodulin (CAL) and translation elongation factor-1 alpha (TEF-1α) genes with MpTefF/MpTefR, and MpCalF/MpCalR primer sets (Santos et al. 2020), respectively. The online resource Basic Local Alignment Search Tool (BLAST; https://www.ncbi.nlm.nih.gov/BLAST) confirmed the fungus identity as 100% M. phaseolina. The sequences of the original isolate BF21-25 were deposited in GenBank with accession numbers OQ615297 (ITS), OR357630 (CAL), and OR363106 (TEF-1α). To confirm pathogenicity, bioassays were conducted under controlled conditions. Four seeds of cultivar 'Etna' were sown per pot, and five pots were used for inoculated (approx. 4 × 105 microsclerotia/pot) and control (mock-inoculated with sterile PDA medium) treatments. For the inoculum, 20 g of macerated 10 to 14-day old M. phaseolina culture grown on PDA medium was applied to each pot using an inoculum layering technique. Pots were kept in the greenhouse with 28/17°C day/night, 13 h light/11 h dark cycle, and 70% relative humidity and watered weekly. Disease symptoms similar to those observed in the field were visible on all inoculated plants at the mid-seed-fill growth stage. Mock-inoculated control plants didn't show any symptoms. The experiment was repeated twice with similar results. The pathogen was re-isolated from infected plants to confirm Koch's postulates and identified as M. phaseolina based on the morphology and sequences of ITS, CAL and TEF-1α regions. To our knowledge, this is the first report of charcoal rot caused by M. phaseolina on dry bean in Western Canada.

7.
Plant Dis ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953226

RESUMO

Macrophomina phaseolina (Tassi) Goid. is a soilborne necrotrophic fungal pathogen causing charcoal rot on approximately 500 plant species worldwide (Mengistu et al. 2015). Charcoal rot occurs in eastern Canada and many regions of the USA, causing substantial yield losses in soybean [Glycine max (L.) Merr.] (Allen et al. 2017; Bradley et al. 2021; Wrather et al. 2001). However, it has not been reported in soybean in western Canada. Manitoba is the second largest soybean producer in Canada, comprising 31% of total seeded areas with 2.29 M acres in 2017 (Statistics Canada 2022). Still, soybean is a relatively new crop to Manitoba and annual surveys of soybean root diseases began in 2012. In August 2020, randomly selected soybean fields were surveyed for root diseases at 63 different locations in south-central and southwest Manitoba. A total of thirty diseased plants were sampled in a zigzag pattern at three random sites in each field and all samples were brought to the laboratory and rated for disease severity. All plants showed symptoms of root rot, and some samples exhibited wilting with yellowing-brown leaves attached to the stems by the petioles; when the taproot was sectioned longitudinally, black streaking could be observed. In the laboratory, 600 roots from 40 selected fields were processed for pathogen isolation and identification. A 1 cm section from each root was surface-sterilized in a 95% EtOH:5.25% NaOCl solution for 30 sec, rinsed in sterile water for 60 sec, and air-dried on sterilized filter paper in a laminar flow hood. Root tissues with two replicates were placed on potato dextrose agar (PDA) plates amended with streptomycin sulfate (2 mg/mL) and incubated at room temperature. Black microsclerotia were observed in cultures from three different fields and three individual fungal isolates were obtained from each field through isolation of a single microsclerotium and subsequent hyphal tip transfer. The mycelia were initially hyaline and turned gray to dark brown or black, forming numerous microsclerotia ranging in size from 13 to 61 µm long and 12 to 32 µm wide, based on measurements of approximately 100 microsclerotia per isolate using a Zeiss Axio Imager A2 microscope equipped with an AxioCam HRc (Carl Zeiss, Jena, Germany) and AxioVision software. The color of the microsclerotia was jet black and the shape was round to oblong or irregular, as described by Mengistu et al. (2015). Based on morphological characteristics and microscopic examination, three fungal isolates were identified as M. phaseolina (Mengistu et al. 2015). For molecular identification, genomic DNA was extracted from 10 to 14-day old mycelia and microsclerotia of each isolate using a ZymoBIOMICS™ DNA Miniprep Kit (Zymo Research Corp., Irvine, CA, USA) according to the manufacturer's instructions. The internal transcribed spacer (ITS) region, translation elongation factor-1α (TEF-1α), and calmodulin (CAL) genes were amplified using the primer sets ITS1/ITS4 (White et al. 1990), MpTefF/MpTefR, and MpCalF/MpCalR (Santos et al. 2020), respectively, according to the original reaction conditions. Subsequently, PCR products were sequenced at Eurofins Genomics (Louisville, KY, USA). BLASTn analysis in GenBank showed that the nucleotide sequences of these regions of the three isolates (NSRR20-MB-24, NSRR20-MB-34, and NSRR20-MB-40) matched multiple isolates of M. phaseolina with 100% query cover and 100% identity. Sequences were deposited in GenBank for the ITS (OK127887, OK142725, OK128266), TEF-1α (OR363103, OR363104, OR363105), and CAL (OR357627, OR357628, OR357629) regions. In addition, the ITS and TEF-1α sequences of the three novel isolates were further aligned with multiple previously reported isolates of M. phaseolina, M. pseudophaseolina, and M. euphorbiicola (Chen et al. 2013; Machado et al. 2019; Sarr et al. 2014) using Muscle and trimmed (Edgar 2004). Alignments were concatenated to generate a maximum likelihood tree. Once concatenated, sequences were re-aligned. The obtained alignments were employed to construct a phylogenetic tree using the max likelihood method and Tamura-Nei model (Tamura and Nei 1993) with 10,000 bootstrap replicates using MEGA 11 (Tamura et al. 2021). The ITS and TEF-1α analysis indicated that the isolates were grouped in three differentiated clades (Figure 1). Macrophomina phaseolina isolates clustered in the same clade at 98% similarity, with the three novel soybean isolates NSRR20-MB-24, NSRR20-MB-34, and NSRR20-MB-40 grouped closely in the cluster at 98% similarity and identified as M. phaseolina. In contrast, isolates of M. euphorbiicola formed another clade at 87% similarity and M. pseudophaseolina isolates grouped in a clade at 99%. The pathogenicity of the three isolates was evaluated under controlled conditions. Given that no information on charcoal rot resistance in soybean has been reported in Canada, one of the commonly grown varieties in Manitoba, "TH 32004", was selected for the pathogenicity test. Surface-sterilized soybean seeds, which had been pre-germinated for three days, were sown in a sterilized soilless growing mix (Sunshine #5) together with 5 g (approx. 1 × 105 microsclerotia) of macerated 10 to 14-day old inoculum grown on PDA-streptomycin agar medium at room temperature and applied using an inoculum layering technique. For the non-inoculated control, macerated PDA-streptomycin agar without mycelia was used. Twenty plants per treatment were maintained in a walk-in plant growth chamber with a 16 h photoperiod at 25/20 °C ± 1 °C (day/night) and 50% relative humidity. Plants were watered weekly but were subjected to water stress. Symptoms of charcoal rot were observed in the root systems of all inoculated soybean plants after 28 days, while no symptoms were observed in the control plants (Figure S1). There was production of microsclerotia on the roots inoculated with each isolate (data not shown). Three isolates of M. phaseolina were re-isolated from the inoculated plants and found to be identical to the inoculated isolates with respect to morphological characteristics in culture, as well as with respect to the ITS, TEF-1α and CAL DNA sequences. For each isolate and non-inoculated control, five seeds of 'TH 32004' were seeded per pot, and four pots were used for the inoculated and control treatments. The experiment was repeated twice in a randomized complete block design with similar results, fulfilling Koch's postulates. To our knowledge, this is the first report of charcoal rot caused by M. phaseolina on soybean in Manitoba, Canada.

8.
Vavilovskii Zhurnal Genet Selektsii ; 27(6): 565-571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37965372

RESUMO

Charcoal rot (CR) caused by the fungal pathogen Macrophomina phaseolina is a devastating disease affecting soybean (Glycine max (L.) Merrill.) worldwide. Identifying the genetic factors associated with resistance to charcoal rot is crucial for developing disease-resistant soybean cultivars. In this research, we conducted a genome-wide association study (GWAS) using different models and genotypic data to unravel the genetic determinants underlying soybean resistance to сharcoal rot. The study relied on a panel of 252 soybean accessions, comprising commercial cultivars and breeding lines, to capture genetic variations associated with resistance. The phenotypic evaluation was performed under natural conditions during the 2021-2022 period. Disease severity and survival rates were recorded to quantify the resistance levels in the accessions. Genotypic data consisted of two sets: the results of genotyping using the Illumina iSelect 6K SNP (single-nucleotide polymorphism) array and the results of whole-genome resequencing. The GWAS was conducted using four different models (MLM, MLMM, FarmCPU, and BLINK) based on the GAPIT platform. As a result, SNP markers of 11 quantitative trait loci associated with CR resistance were identified. Candidate genes within the identified genomic regions were explored for their functional annotations and potential roles in plant defense responses. The findings from this study may further contribute to the development of molecular breeding strategies for enhancing CR resistance in soybean cultivars. Marker-assisted selection can be efficiently employed to accelerate the breeding process, enabling the development of cultivars with improved resistance to сharcoal rot. Ultimately, deploying resistant cultivars may significantly reduce yield losses and enhance the sustainability of soybean production, benefiting farmers and ensuring a stable supply of this valuable crop.

9.
Plants (Basel) ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005704

RESUMO

Charcoal rot caused by the fungal pathogen Macrophomina phaseolina (Tassi) Goid is one of various devastating soybean (Glycine max (L.) Merr.) diseases, which can severely reduce crop yield. The investigation into the genetic potential for charcoal rot resistance of wild soybean (Glycine soja) accessions will enrich our understanding of the impact of soybean domestication on disease resistance; moreover, the identified charcoal rot-resistant lines can be used to improve soybean resistance to charcoal rot. The objective of this study was to evaluate the resistance of wild soybean accessions to M. phaseolina at the seedling stage and thereby select the disease-resistant lines. The results show that the fungal pathogen infection reduced the growth of the root and hypocotyl in most G. soja accessions. The accession PI 507794 displayed the highest level of resistance response to M. phaseolina infection among the tested wild soybean accessions, while PI 487431 and PI 483660B were susceptible to charcoal rot in terms of the reduction in root and hypocotyl growth. The mean values of the root and hypocotyl parameters in PI 507794 were significantly higher (p < 0.05) than those of PI 487431 and PI 483460B. A analysis of the resistance of wild soybean accessions to M. phaseolina using the root and hypocotyl as the assessment parameters at the early seedling stage provides an alternative way to rapidly identify potential resistant genotypes and facilitate breeding for soybean resistance to charcoal rot.

10.
Front Genet ; 14: 1103969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351341

RESUMO

Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

11.
Plant Dis ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261878

RESUMO

The production of industrial hemp (Cannabis sativa) has had a sharp increase in the past five years in Croatia (Mihelcic 2017). Production has been in constant increase, from 1560 ha in 2015 to 2476 ha in 2019 (PAAFRD). In August 2019, numerous (~1.5%) premature wilted hemp plants (cultivar Fibranova) were observed in commercial fields in Vladislavci (45.4646950° N, 18.5674770° E), around Osijek, Croatia. Diseased plants showed symptoms of chlorosis, rapidly wilting, necrosis and prematurely dying. The stalk of diseased plants was completely desiccated, while internal tissues were spongy and fluffy. Near the soil line, discoloration of the stalk with small spherical to oblong black microsclerotia was detected. Roots were necrotic with brown-gray areas. Twenty root and crown segments of the infected plants (2- to 3-mm long pieces) were surface sterilized with 2% NaOCl for 5 min, rinsed three times with sterile distilled water, and plated on potato dextrose agar (PDA, pH 6.2) media, containing 250 mg per liter of chloramphenicol to inhibit bacterial growth (Zveibil and Freeman 2005). The culture plates were incubated at 28 ± 2°C for 7 days in the dark and purified to obtain a pure culture that produces numerous, dark, hard, ovoidal-shaped sclerotia, averaging 140 x 52 µm (n=50). The single sclerotium isolate produced flat light to dark gray colonies with entire margins. Based on field symptoms, colony and microsclerotia morphology, the fungus was identified as Macrophomina phaseolina (Tassi) Goid (Marquez et al. 2021). Total DNA from the isolate was extracted with Extract-N-Amp Plant PCR Kit (Sigma-Aldrich Co., USA). To confirm morphological identification, part of the TEF 1-alpha gene region was amplified using EF1-728F (Carbone and Kohn 1999) and EF2 (O'Donell et al. 1998). The sequence of the isolate MP1 (212 bp - GenBank accession no. OQ389757), showed 100% nucleotide sequence identity to the reference sequence of M. phaseolina GenBank sequence MG434668 (Casano et al. 2018). Eighteen hemp plants (cv. Fibranova) were sown in six plastic pots (three hemp plants per pot) for the pathogenicity test. Ten-day-old M. phaseolina culture (isolate MP1) was used for inoculum preparation. Each pot of one-week-old plant was irrigated with 100 ml of a microsclerotia suspension (105 microsclerotia/ml)(Abied et al. 2018). Plants were held at 28°C and 70% relative humidity in a growth chamber (aralab, Fitoclima 10.000 HP) with a 16-hour photoperiod. Pots with control plants were irrigated with the same amount of sterile distilled water. Ten weeks after inoculation percentage of wilted plants was 77.78%. In the control variant all plants were healthy. M. phaseolina was reisolated from inoculated plants and morphologically identified. With the liberalization of the law, hemp production in Croatia is increasing, which could result in general disease problems and the disease caused by M. phaseolina. Charcoal rot will be expressed in years with dry and warm summers (Lodha and Mawar 2020), and relatively short, cool, rainy winters (Nevo et al. 2012), which has become common in the last decade in Croatia. To our knowledge, this is the first report of M. phaseolina on hemp in Croatia. The authors declare no conflict of interest.

12.
Front Microbiol ; 14: 1164035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152751

RESUMO

'Candidatus Phytoplasma solani' (stolbur phytoplasma) is associated with rubbery taproot disease (RTD) of sugar beet (Beta vulgaris L.), while Macrophomina phaseolina is considered the most important root rot pathogen of this plant in Serbia. The high prevalence of M. phaseolina root rot reported on sugar beet in Serbia, unmatched elsewhere in the world, coupled with the notorious tendency of RTD-affected sugar beet to rot, has prompted research into the relationship between the two diseases. This study investigates the correlation between the occurrence of sugar beet RTD and the presence of root rot fungal pathogens in a semi-field 'Ca. P. solani' transmission experiment with the cixiid vector Reptalus quinquecostatus (Dufour), in addition to naturally infected sugar beet in the open field. Our results showed that: (i) Reptalus quinquecostatus transmitted 'Ca. P. solani' to sugar beet which induced typical RTD root symptoms; (ii) Macrophomina phaseolina root rot was exclusively present in 'Ca. P. solani'-infected sugar beet in both the semi-field experiment and naturally infected sugar beet; and that (iii) even under environmental conditions favorable to the pathogen, M. phaseolina did not infect sugar beet, unless the plants had been previously infected with phytoplasma.

13.
Plant Dis ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157100

RESUMO

Charcoal rot, caused by Macrophomina phaseolina, is abundantly present in the soil and has been reported as pathogenic to both soybean and corn, as well as numerous other hosts, including hemp grown for fiber, grain, and cannabinoids (Casano et al. 2018; Su et al. 2001). Hemp (Cannabis sativa) production in Missouri was a relatively new addition to the 2021 growing season. Charcoal rot was reported in Reynolds, Knox, and Boone counties in Missouri from commercial and experimental fields. One of the fields in question experienced heavy disease pressure and had an uneven stand loss, but the total loss was estimated at approximately 60% of the field and was attributed to charcoal rot. Charcoal rot signs and symptoms, microsclerotia on the lower stem and root tissue, wilting and stem discoloration, were observed on a majority of the hemp plants received at the University of Missouri Plant Diagnostic Clinic in July and late Fall of 2021, including samples from Bradford Research Farm in Boone County and Greenley Research Center in Knox County. Root and crown tissue from the hemp plants from the Greenley Research Center were cultured onto acidified potato dextrose agar (APDA). Macrophomina phaseolina and other fungi grew from the plated tissue after about three days of incubation at room temperature. Macrophomina phaseolina was confirmed based on the presence of melanized hyphae and microsclerotia (Siddique et al. 2021). The microsclerotia were black, round to ovoid shaped and ranged from about 34-87 µm (average 64 µm) in length and 32-134 µm (average 65 µm) in width (n = 44). A single-hyphae isolation from a putative M. phaseolina isolate was conducted to obtain a pure culture. The M. phaseolina culture from the Greenley Research Center was used to complete Koch's postulates of charcoal rot on four hemp cultivars. Sterilized toothpicks were added to pure cultures of M. phaseolina on APDA and incubated at room temperature for one week to allow for colonization and for use in greenhouse inoculation. Four hemp cultivars (Katani, Grandi, CFX-2, and CRS-1) were grown in a sterilized silt loam for three weeks in a greenhouse. About four plants per cultivar were grown for inoculation and one plant per cultivar was used as a control. The plants were inoculated with the M. phaseolina colonized toothpicks that were gently rubbed onto stem tissue and subsequently inserted into the soil at the stem. For six weeks, the plants were kept in greenhouse conditions of 25°C with a 12-hour light and dark cycle and were watered when soil appeared dry. Plants were kept in a loosely sealed container constructed from wood and vinyl sheeting to minimize cross contamination with other plants grown in the same greenhouse. Plants were monitored weekly for charcoal rot symptoms. Symptoms that resembled charcoal rot, wilting and microsclerotia on the lower stem, were present on inoculated plants after about four weeks and symptoms were not present on the control plants. Isolates resembling M. phaseolina in culture were recovered from symptomatic plants; therefore, Koch's postulates were successfully fulfilled and the fungus was recovered from the inoculated plants. DNA was extracted from the pure cultures of both the initial isolate and the isolate obtained from Koch's postulates using GeneJet Plant Genomic DNA Purification Kit (Thermo Scientific, California, USA) and the internal transcribed spacer (ITS) region of ribosomal DNA including ITS1, 5.8S, and ITS4 regions were amplified using universal primers ITS1 and ITS4 (White et al. 1990). The ITS region was sequenced and compared to reference sequences in GenBank by BLAST analysis. Recovered isolates (GenBank accession no. OQ455934.1) showed closest sequence similarity (100%) to M. phaseolina accession number GU046909.1. Little is known about the life cycle, growth conditions, and possible inoculum buildup in the soil in hemp in Missouri. In addition, M. phaseolina is a known pathogen of corn and soybean and effective management strategies are challenging for these crops as well due to the broad host range of the pathogen. Cultural management practices, such as crop rotations to reduce inoculum in the soil and closely monitoring for symptoms, may help reduce the severity of this disease.

14.
Plant Dis ; 107(2): 413-421, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36794968

RESUMO

Soybean (Glycine max [L.] Merr.) production is influenced by planting date, but its impact on yield in fields infested with Macrophomina phaseolina (Tassi) Goid. is unknown. A 3-year study was conducted in M. phaseolina-infested fields to assess the effects of planting date (PD) on disease severity and yield using eight genotypes, four of which are reported to be susceptible to charcoal rot (S), and four reported with moderate resistance (MR) to charcoal rot (CR). The genotypes were planted in early April, early May, and early June under irrigated and nonirrigated conditions. There was planting date by irrigation interaction for area under the disease progress curve (AUDPC) where May PD was significantly lower compared to April and June PDs in irrigated environments but not in nonirrigated environments. Correspondingly, yield in April PD was significantly lower than that of May and June. Interestingly, yield of S genotypes increased significantly with each subsequent PD, while yield of MR genotypes remained high across all three PDs. The interaction of genotypes by PD on yield revealed that the MR genotypes DT97-4290 and DS-880 had the greatest yields in May compared to April. While May PD had a decreased AUDPC and an increased yield across genotypes, the result of this research suggests that in fields infested with M. phaseolina, early May to early June planting coupled with appropriate cultivar selection provides maximum yield potential for western Tennessee and mid-southern soybean growers.


Assuntos
Ascomicetos , Glycine max , Glycine max/genética , Doenças das Plantas/genética , Ascomicetos/fisiologia , Genótipo
15.
Plants (Basel) ; 12(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679106

RESUMO

Charcoal rot, caused by Macrophomina phaseolina, is a major soybean disease resulting in significant yield loss and poor seed quality. Currently, no resistant soybean cultivar is available in the market and resistance mechanisms to charcoal rot are unknown, although the disease is believed to infect plants from infected soil through the roots by unknown toxin-mediated mechanisms. The objective of this research was to investigate the association between seed sugars (sucrose, raffinose, stachyose, glucose, and fructose) and their role as biomarkers in the soybean defense mechanism in the moderately resistant (MR) and susceptible (S) genotypes to charcoal rot. Seven MR and six S genotypes were grown under irrigated (IR) and non-irrigated (NIR) conditions. A two-year field experiment was conducted in 2012 and 2013 at Jackson, TN, USA. The main findings in this research were that MR genotypes generally had the ability to maintain higher seed levels of sucrose, glucose, and fructose than did S genotypes. Conversely, susceptible genotypes showed a higher level of stachyose and lower levels of sucrose, glucose, and fructose. This was observed in 6 out of 7 MR genotypes and in 4 out of 6 S genotypes in 2012; and in 5 out of 7 MR genotypes and in 5 out of 6 S genotypes in 2013. The response of S genotypes with higher levels of stachyose and lower sucrose, glucose, and fructose, compared with those of MR genotypes, may indicate the possible role of these sugars in a defense mechanism against charcoal rot. It also indicates that nutrient pathways in MR genotypes allowed for a higher influx of nutritious sugars (sucrose, glucose, and fructose) than did S genotypes, suggesting these sugars as potential biomarkers for selecting MR soybean plants after harvest. This research provides new knowledge on seed sugars and helps in understanding the impact of charcoal rot on seed sugars in moderately resistant and susceptible genotypes.

16.
Pathogens ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297174

RESUMO

Charcoal rot, caused by the soilborne hemibiotrophic fungus Macrophomina phaseolina, is a prevalent and economically significant plant disease. It is hypothesized that M. phaseolina induces oxidative stress-mediated senescence in plants. Infection by M. phaseolina results in the host's accumulation of reactive oxygen species (ROS) that contribute toward basal defense. However, the production of ROS could also lead to cellular damage and senescence in host tissue. This study aimed to determine if ascorbic acid, a ROS scavenging molecule, could quench M. phaseolina-induced hydrogen peroxide (H2O2) generation in a soybean-M. phaseolina pathosystem. In vitro sensitivity tests showed that M. phaseolina isolates were sensitive to L-ascorbic acid (LAA) at concentrations of 10.5 to 14.3 mM based on IC50 (half-maximal inhibitory concentration) data. In planta cut-stem assays demonstrated that pre-treatment with 10 mM of either LAA (reduced form) or DHAA (dehydroascorbic acid; oxidized form) significantly decreased lesion length compared to the non-pretreated control and post-treatments with both ascorbic acid forms after M. phaseolina inoculation. Further, H2O2 quantification from ascorbic acid-pretreated tissue followed by M. phaseolina inoculation showed significantly less accumulation of H2O2 than the inoculated control or the mock-inoculated control. This result demonstrated that M. phaseolina not only induced H2O2 after host infection but also increased ROS-mediated senescence. This study shows the potential of ascorbic acid, an effective ROS scavenger, to limit ROS-mediated senescence associated with M. phaseolina infection.

17.
Front Microbiol ; 13: 899224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958154

RESUMO

Charcoal rot disease is incited by the soil-borne fungus Macrophomina phaseolina (Tassi). Goid is a challenging disease due to long-term persistence of fungus sclerotia in the soil. This study assessed the potential of zinc (Zn: 1.25, 2.44, and 5 mg/kg) and green manure (GM: 1 and 2%) in solitary and bilateral combinations to alleviate infection stress incited by M. phaseolina on disease, growth, physiology, and yield attributes in mungbean. A completely randomized design experiment was conducted in potted soil, artificially inoculated with the pathogen, and sown with surface-sterilized seeds of mungbean genotypes (susceptible: MNUYT-107 and highly susceptible: MNUYT-105). Concealment of plant resistance by M. phaseolina in both genotypes resulted in 53-55% disease incidence and 40-50% plant mortality, which contributed in causing a significant reduction of 30-90% in attributes of growth, biomass, yield, photosynthetic pigment, and total protein content with an imbalance of production of antioxidant enzymes (polyphenol oxidase, superoxide dismutase, catalase, and peroxidase). Soil application with Zn-based fertilizer (ZnSO4: 33%) in combination with GM significantly managed up to 80% of the charcoal rot disease, hence improving growth (50-100%) and physiochemical (30-100%) attributes and sustainably enhancing grain average yield (300-600%), biological yield (100-200%), and harvest index (100-200%) in mungbean plants. The heat map and principal component analyses based on 19 measured attributes with 16 treatments separated Zn (2.44 or 5 mg/kg) combined with 2% GM as the best treatments for alleviating charcoal rot disease stress by improving growth, yield, and biological attributes to an extent to profitable farming in terms of harvest index (HI) and benefit-cost ratio (BCR).

18.
J Appl Microbiol ; 133(5): 2835-2850, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35921041

RESUMO

AIM: The aim was to characterize cold-adapted bacteria by testing their PGP features and antagonistic activity against Macrophomina phaseolina, both in vitro and coating soybean seeds (Glycine max [L.] Merr.). METHODS AND RESULTS: Burkholderia gladioli MB39, Serratia proteamaculans 136 and Serratia proteamaculans 137 were evaluated. In vitro tests showed that S. proteamaculans 136 and 137 produce siderophore and indole-acetic acid (IAA), solubilize phosphate and fix nitrogen. Additionally, B. gladioli MB39 and S. proteamaculans 137 showed hydrolase activity and potent antifungal effects. The biocontrol efficacy over soybean seeds was evaluated using in vitro and greenhouse methods by immersing seeds into each bacterial suspension. As a result, S. proteamaculans 136 has improved the performance in all the seed germination evaluated parameters. In addition, S. proteamaculans 137 and B. gladioli MB39 strongly inhibited M. phaseolina, reducing the infection index values to 10% and 0%, respectively. CONCLUSION: Serratia proteamaculans 136, 137 and Burkholderia gladioli MB39 showed plant growth promotion features and inhibition of Macrophomina phaseolina infection by producing different antifungal compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results reinforce the application of cold-adapted Serratia proteamaculans and Burkholderia gladioli bacterial strains as candidates for developing microbial formulation to promote plant growth and guarantee antifungal protection in soybean crops.


Assuntos
Glycine max , Doenças das Plantas , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Sideróforos , Antifúngicos/farmacologia , Serratia , Sementes , Nitrogênio , Fosfatos , Acetatos , Hidrolases
19.
Pest Manag Sci ; 78(11): 4638-4648, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35866210

RESUMO

BACKGROUND: Silver oxide (Ag2 O) nanostructures were fabricated and their ability to induce antifungal activity against Macrophomina phaseolina, which causes charcoal rot disease in strawberries, was evaluated under laboratory, greenhouse and field conditions. A real-time quantitative polymerase chain reaction was used to monitor expression of defense-related genes, which is essential to evaluate the potential of the manufactured nanoparticles to promote strawberry resistance against charcoal rot. The effect of Ag2 O nanoparticles on growth characteristics in strawberry plants was also studied. RESULTS: The results showed that Ag2 O significantly inhibited M. phaseolina growth compared with untreated controls under in vitro conditions. Strawberry plants treated with Ag2 O showed a significant decrease in the severity of charcoal rot disease in the greenhouse compared with untreated plants. Strawberry plants treated with Ag2 O nanoparticles expressed defense gene (PR-1) involved in the salicylic acid signaling pathways at levels three to five times higher than in the control group. Ag2 O nanoparticles significantly improved the growth and yield of the strawberry crop. CONCLUSION: Use of Ag2 O nanoparticles can be considered a new strategy to control M. phaseolina and this is the first report of this effect. © 2022 Society of Chemical Industry.


Assuntos
Fragaria , Nanoestruturas , Antifúngicos , Ascomicetos , Fragaria/genética , Fragaria/microbiologia , Óxidos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ácido Salicílico , Compostos de Prata
20.
Plant Dis ; 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522964

RESUMO

Stevia (Stevia rebaudiana [Bertoni] Bertoni) is a perennial plant originating in Paraguay. Stevia is primarily cultivated for the production of non-caloric sweeteners. In December 2018, wilted stevia cv. 'PC4' were recovered from two separate fields of 0.3 ha (24.66 S 56.46 W) and 0.5 ha (24.69 S 56.44 W), both with 3 years history of stevia production in San Estanislao County, San Pedro, Paraguay. The wilted plants were randomly distributed in beds covered with plastic mulch and a 30% disease incidence was recorded. Dark brown septate hyphae and microsclerotia were observed on stem bases and black necrotic roots of the wilted plants. Root and crown regions were washed, cut into 0.5 to 1.0 cm pieces, and then surface-disinfested with 0.6% NaOCl before placing them in Petri dishes containing acidified potato-dextrose-agar. Plates were incubated for one week at 25 ± 5°C under fluorescent light with a 12 h photoperiod yielding five isolates SP1PY, SP2PY, SP3PY, SP4PY and SP5PY with gray-black colonies without conidia but showing numerous microsclerotia. Twenty microsclerotia from pure cultures of five isolates were measured, with mean width 38.8 ± 4.7 µm and length 68.8 ± 15.5 µm. Fungal DNA was extracted from mycelia of five isolates for PCR amplification of the internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF1-α) using ITS4/ITS5 and EF1-728F/EF-2 primers (Machado et al. 2019). The resultant amplicons were sequenced at Eton Bioscience (Research Triangle Park, NC) and deposited in the NCBI GenBank database (ITS: MT645815, OM956150, OM956151, OM956152, OM956153; and TEF1-α: MT659121, OM959505, OM959506, OM959507, OM959508). Sequences were aligned with several isolates of Macrophomina spp. previously reported (Huda-Shakirah et al. 2019; Machado et al. 2019; Santos et al. 2020; Poudel et al. 2021) using ClustalW. Alignments (ITS and TEF-1α) were concatenated to generate a maximum likelihood tree using MEGA7. The novel isolates grouped into the M. euphorbiicola clade with 95% of bootstrap support. Stevia plants cv. 'Katupyry' were grown in 10 cm-diameter nursery bags containing autoclaved sandy soil and kept under greenhouse conditions (28 ± 5°C; 16 h photoperiod). Fifteen plants per isolate (n=75) were inoculated by adding 20 g of rice infested with M. euphorbiicola to each plant. Infested grains were distributed around the crown of the plant at a depth of 0.5 cm; non-infested rice was added to four control plants. Lower-stem lesions and microsclerotia of M. euphorbiicola developed on all inoculated plants. No lesions or microsclerotia were observed on control plants. The M. euphoribiicola fungus was re-isolated from inoculated stevia plants but not from the non-infested rice treated plants. Koch's postulates were repeated twice with similar results. Previously, M. phaseolina was reported causing charcoal rot on stevia in Egypt (Hilal and Baiuomy 2000), and in North Carolina, USA (Koehler and Shew 2017). However, Paraguayan isolates grouped with isolates of M. euphorbiicola based on the combined sequences of the ITS and TEF-1α regions. Machado et al. (2019) reported M. euphorbiicola causing charcoal rot on castor bean (Ricinus communis) and bellyache bush (Jatropha gossypifolia) in Brazil, which borders northeast Paraguay, a major stevia production area. This pathogen has a significant impact on stevia production during hot, dry weather by reducing the number of harvestable plants and increasing replanting costs in perennial production systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA