RESUMO
Non-starch polysaccharides are major bioactive components in chestnuts, and can serve as water-soluble polysaccharides with potential prebiotic properties. This study aims to establish an in vitro digestion and fermentation model to reveal the digestive and fermentative characteristics of Non-starch polysaccharides from chestnut kernels (NSPCK). The results indicated that under simulated digestion, NSPCK was partially digested in gastric juice but remained significantly undigested in saliva and intestinal juice, demonstrating considerable resilience against hydrolysis. After digestion, NSPCK still exhibited stable rough, lamellar, and porous structure and maintained strong antioxidant capacity. Animal experiments revealed positive effects of NSPCK on blood lipid level, and colon tissue of mice. Moreover, NSPCK enhanced the accumulation of short-chain fatty acids during fermentation, particularly acetic acid, propionic acid, and butyric acid. Furthermore, NSPCK intervention increased the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, and at the same time reduced that of harmful bacteria such as Enterococcus.
RESUMO
This study aimed to synthesize phenytoin (PHT)-loaded water chestnut starch-based biomaterials and evaluate their drug release kinetics for use in transdermal drug delivery systems for antiepileptic therapy. Hierarchical microparticles (HMPs) extracted from human hair were also used to improve the PHT release efficiency. The physicochemical characteristics of PHT, HMPs, and the prepared biomaterials were evaluated by physical properties, antimicrobial activities, FE-SEM, FT-IR, XRD, 1H NMR, and 13C CPMAS solid-state NMR. The photothermal effect and the PHT release profile were confirmed through 808 nm NIR laser irradiation. After 30 min of the laser exposure, the temperature of the HMP-added biomaterials increased by 1.50-1.59 times compared to that of without the HMPs. PHT release in buffers and artificial skin test under NIR laser irradiation enhanced by 1.20-1.85 times owing to the photothermal effect. The release kinetics in pH buffer and artificial skin were determined using the Fickian diffusion and Korsmeyer-Peppas models. Additionally, to verify the transdermal penetration of PHT, drug-release simulations were conducted using rhodamine B in agar blocks and pig ears. The results implied that the photothermal effect of the HMPs enhanced the penetration of the drug.
RESUMO
Loquat leaf extract (LLE) was added to guar gum and pullulan as an environmentally friendly packaging film (GPE) to preserve Chinese water chestnuts (CWCs). The effect of the amount of LLE on the guar gum/pullulan composite film was investigated. The optimal amount of LLE was 4% (GPE4), with lower water vapor permeability (WVP) and greater mechanical strength, antioxidant, and comparable antibacterial performance than many pullulan-based films. Upon packing the CWCs for 4 days, the weight loss rate of GPE4 was only 1.80 ± 0.05%. For GPE4, the POD activity, the soluble solid content, and the vitamin C (Vc) content of the CWCs were 21.61%, 36.16%, and 26.22% higher than those of the control sample, respectively. More importantly, GPE4 was effective in preserving the quality of CWCs after 4 days of storage, better or at least comparable to non-biodegradable plastic wrapping (PE). Therefore, it can be concluded that GPE films hold significant promise as a sustainable alternative packaging material for preserving fruit-based foods like CWCs, potentially replacing PE in the future.
RESUMO
The genus Dendrostoma is known to inhabit tree barks associated with branch canker diseases in China and several countries of Europe. Previous studies indicated that species of Dendrostoma prefer inhabiting fagaceous hosts, especially species of Castanea. In the present study, we obtained four isolates from cankered branches of Chinese chestnut (C.mollissima) in Rizhao City, Shandong Province, China. Morphological comparisons and phylogenetical analyses of a combined ITS-tef1-rpb2 sequence matrix were conducted, which revealed two new species named Dendrostomarizhaoense sp. nov. and D.tianii sp. nov. The new taxa are compared with other Dendrostoma species and comprehensive descriptions and illustrations are provided herein.
RESUMO
Vegetable tannins are environmentally friendly tanning agents. However, they generally impart a dark colour to the tanned leather and highly contribute to the organic load in wastewaters. In this study, we employed a purification protocol separately on chestnut tannin (CT) and sulfited quebracho tannin (QT) to obtain the purified fractions (PCT and PQT). These samples were characterised by GPC, 1H NMR, 13C NMR, FT-IR, and HPLC-DAD techniques and applied for tanning tests. Through the purification process, non-tannin components and smaller molecules such as gallic acid, glucopyranose, and catechin were effectively removed from CT and QT, which consequently led to the reduced moisture content, pH value, and lighter colour of purified fractions. The crust leathers processed with PCT and PQT showed desirable light shades. Moreover, the organic loads in PCT and PQT tanning wastewater were reduced by 13.5% and 19.1%, respectively, when compared to those in traditional CT and QT tanning wastewater. Additionally, the physical and mechanical characteristics of crust leathers processed with PCT and PQT were comparable to those processed with CT and QT. Thus, purification of vegetable tannins may serve as a feasible strategy for producing light-colored vegetable-tanned leather while minimizing organic pollutant discharge during the vegetable tanning process. Supplementary Information: The online version contains supplementary material available at 10.1186/s42825-024-00171-9.
RESUMO
Fresh-cut Chinese water chestnuts (CWCs) are susceptible to yellowing and browning during storage due to mechanical damage and the loss of protective outer skin, adversely affecting their marketability and shelf life. Methyl jasmonate (MeJA) is currently extensively used for food preservation, but it has not been used in Chinese water chestnuts. This study investigated the effect of MeJA treatment on the quality of fresh-cut CWCs. Fresh-cut CWCs immersed in 20 µM MeJA solution for 10 min and stored at 10°C for 5 d effectively delayed the yellowing process, reduced the respiration rate, and minimized the weight and soluble solids loss during storage. In addition, MeJA treatment induced the activities of superoxide dismutase (SOD) and catalase (CAT), which improved the antioxidant capacity of fresh-cut CWCs and inhibited the generation of reactive oxygen species (ROS). Meanwhile, MeJA treatment inhibited the activities of phenylalanine aminotransferase (PAL), polyphenol oxidase (PPO) and peroxidase (POD). The results of quantitative real-time PCR (qRT-PCR) showed that MeJA down-regulated the expression of CwCHS1, CwCHS2, CwCHS3 and CwCHI2 in freshly cut CWCs and inhibited the accumulation of flavonoids, thus delaying the surface discoloration of freshly cut CWCs.
RESUMO
Chestnut inner shell, cinnamon, and ε-poly-lysine (ε-PL) have been used for natural preservative of food grade, and combined preservatives (CP) has been formulated previously. This study examined whether Staphylococcus aureus growth could be controlled using CP in tryptic soy broth (TSB). CP inhibited S. aureus growth by about 5 log CFU/mL in TSB. The cell surface hydrophobicity, autoaggregation, and motility of S. aureus were slightly reduced by CP treatment. The expression of adhesion- and toxin-related genes in S. aureus treated with CP was reduced than that in the control treated with TSB. In addition, the inhibitory activity of the CP was visible through the SEM images. Therefore, the CP consisted of chestnut inner shell extract, cinnamon extract, and ε-PL had appropriate antibacterial effect against S. aureus and could be applied as antibacterial agents.
RESUMO
The chestnut tree (Castanea sativa Mill.) is a widespread plant in Europe, rich in high-value compounds, which can be divided mainly into monomeric polyphenols and tannins. These compounds exhibit various biological activities, such as antioxidant, as well as anticarcinogenic and antimicrobial properties. Chestnut wood (CW) extracts were prepared using different extraction techniques, process conditions, solvents, and their mixtures. This work aimed to test various extraction techniques and determine the optimal solvent for isolating enriched fractions of vescalagin, castalagin, vescalin, and castalin from CW residues. Supercritical CO2 extraction with a more polar cosolvent was applied at different pressures, which influenced solvent density. According to the results, the proportions of the components strongly depended on the solvent system used for the extraction. In addition, HPLC-DAD was used for semiqualitative purposes to detect vescalagin, castalagin, vescalin, and castalin. The developed valorization protocol allows efficient fractionation and recovery of the polyphenolic components of CW through a sustainable approach that also evaluates pre-industrial scaling-up.
Assuntos
Aesculus , Taninos Hidrolisáveis , Extratos Vegetais , Madeira , Taninos Hidrolisáveis/química , Extratos Vegetais/química , Aesculus/química , Madeira/química , Cromatografia Líquida de Alta Pressão , Polifenóis/química , Polifenóis/análise , Solventes/química , Antioxidantes/químicaRESUMO
Chestnuts become sweetened with better tastes for fried products after cold storage, but the possible mechanism is not clear. The dynamics of sugar components and related physiological responses, as well as the possible molecular mechanism in chestnuts during cold storage, were investigated. Sucrose accumulation and starch degradation contributed to taste improvement. Sucrose content reached the peak after two months of cold storage, along with the accumulation of reducing sugars of maltose, fructose and glucose to a much lesser extent. Meanwhile, alpha-amylase and beta-amylase maintained high levels, and the activities of acid invertase and sucrose synthase increased. Transcriptome data demonstrated that differentially expressed genes (DEGs) were significantly enriched in the process of starch and sucrose metabolism pathway, revealing the conversion promotion of starch to sucrose. Furthermore, DEGs involved in multiple phytohormone biosynthesis and signal transduction, as well as the transcription regulators, indicated that sucrose accumulation might be interconnected with the dormancy release of chestnuts, with over 90% germinated after two months of cold storage. Altogether, the results indicated that cold storage improved the taste of chestnuts mainly due to sucrose accumulation induced by DEGs of starch and sucrose metabolism pathway in this period, and the sweetening process was interconnected with dormancy release.
RESUMO
Chestnuts, despite their nutritional value, pose challenges in starch processing, digestion, and absorption. This study employed various color-fixing formulations and processing methods to simulate the in vitro digestion of both untreated and enzymatically hydrolyzed chestnut flour. Changes in starch properties, digestion characteristics, and estimated glycemic index (eGI) were analyzed to understand how enzymatic hydrolysis affects chestnut flour properties. The results showed that the browning of chestnut flour was the least when the mass ratio of vitamin C, citric acid, and EDTA-Na2 was 9:1:0.3. Following treatment with pullulanase and glucoamylase, the content of rapidly digestible starch decreased to 10 %, while the content of slowly digestible starch and resistant starch increased to 62 % and 27 %, respectively. The eGI value of chestnut flour after enzymatic hydrolysis increased to 61.85-65.14, the hydrolysis rate was 78.37 %-89.20 %, the water holding capacity was 5.3-8.6, the solubility was 51.33 %-58.33 %, and the swelling degree decreased to 2.21-3.33 mL/g.
RESUMO
We present a genome assembly from an individual male Cerastis rubricosa (the Red Chestnut moth; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 678.7 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.39 kilobases in length. Gene annotation of this assembly on Ensembl identified 18,784 protein coding genes.
RESUMO
We present a genome assembly from an individual female Diarsia dahlii (the Barred Chestnut; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 683.0 megabases in span. Most of the assembly is scaffolded into 32 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.36 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,177 protein coding genes.
RESUMO
This work involved the preparation of pristine and iron nanoparticle-loaded biochar from a water chestnut shell to remove diclofenac sodium (DCF) containing effluent of pharmaceutical origin. To create suitable forecasting equations for the modelling of the DCF adsorption onto the adsorbent, response surface methodology (RSM) was used. The parameters, e.g. pH, adsorbent mass, DCF concentration and contact time, were used for the modeling of adsorption. The RSM model predicts that for 98.0% DCF removal, the ideal conditions are pH 6, an adsorbent dose of 0.5 g L-1, and a contact time of 60 min with an initial adsorbate concentration of 25 mg L-1 at 303 K. The maximum capacity deduced from the Langmuir model was 75.9 mg g-1 for pristine water chestnut shell biochar (pWCBC) and 122.3 mg g-1 for magnetically modified nano-Fe2O3 biochar (mWCBC). Under equilibrium conditions, the Langmuir model was the best-suited model compared to the Temkin and Freundlich models. The adsorption data in this investigation efficiently fitted the pseudo-second-order model, emphasizing that chemisorption or ion exchange processes may be involved in the process. The WCBC demonstrated recyclability after 10 cycles of repeated adsorption and desorption of DCF. A combined coagulation adsorption process removed COD, NH3-N, NO3-, PO43-, and DCF by 92.50%, 86.41%, 77.57%, 84.54%, and 97.25%, respectively. This study therefore shows that coagulation followed by adsorption onto biochar can be a cost-effective substitute for conventional pharmaceutical wastewater treatment.
Assuntos
Carvão Vegetal , Diclofenaco , Poluentes Químicos da Água , Diclofenaco/química , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Compostos Férricos/químicaRESUMO
Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.
Assuntos
Secas , Fagaceae , Temperatura Alta , Micorrizas , Micorrizas/fisiologia , Fagaceae/microbiologia , Antioxidantes/metabolismo , Fotossíntese , Estresse Oxidativo , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Resposta ao Choque Térmico/fisiologiaRESUMO
Castanea sativa Mill. (C. sativa) processing and pruning generate several by-products, including leaves, burs, and shells (inner and outer teguments), which are considered an important source of high-value phytochemicals. Ellagitannins from C. sativa leaf extracts have been described to impair H. pylori viability and inflammation in gastric cells. Furthermore, chestnut shells showed an important anti-inflammatory effect in gastric epithelial cells. Dietary polyphenols, including tannins, have been reported to interfere with targets of inflammation, including the nuclear factor κB (NF-κB). A promising role as a further therapeutical target for gut disorders has been recently proposed for the regulatory subunit of hypoxia-inducible factor (HIF-1α), as a potential stabilizer of intestinal barrier integrity. Therefore, the main objective of this work is the chemical characterization of several chestnut by-products (bud, spiny bur, wood, pericarp and episperm), together with the exploitation of their anti-inflammatory properties in intestinal cells, scavenging capacity, and stability following gastrointestinal digestion. The chemical characterization confirmed the presence of bioactive polyphenols in the extracts, including ellagitannins. In CaCo-2 cells stimulated by an IL-1ß-IFN-γ cocktail, nearly all chestnut by-products (50 µg/mL) inhibited the release of proinflammatory mediators (CXCL-10, IL-8, MCP-1, ICAM), along with the NF-κB-driven transcription, and induced the HRE-driven transcription. The stability of the most promising extracts, identified through PCA and cluster analysis, was addressed by in vitro gastrointestinal digestion. Despite the significant reduction in total polyphenol index of chestnut bud and wood after gastric and intestinal digestion, the activity of these extracts on both scavenging and anti-inflammatory parameters remained promising. These data contribute to exploit the potential of chestnut by-products as sources of dietary polyphenols with anti-inflammatory properties at the intestinal level. Moreover, this study could represent an important step to encourage the recycling and valorization of chestnut by-products, promoting the circular economy and reducing the environmental impact related to the management of agriculture waste.
Assuntos
Anti-Inflamatórios , Fagaceae , Extratos Vegetais , Humanos , Fagaceae/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células CACO-2 , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Polifenóis/farmacologia , Polifenóis/química , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , NF-kappa B/metabolismoRESUMO
The primary objective of this experiment was to evaluate the effects of a growth-hormone implant (Revalor-G, Merck Animal Health., Rahway, NJ, USA) and tannin supplementation (Silvafeed BX, Silva Team, San Michele Mondovi CN, Italy) on enteric methane (CH4) emissions and estimated nitrogen (N) excretion in grazing steers. Steers (nâ =â 20; initial body weight [IBW]â =â 343â ±â 14 kg) were acclimated to use a portable automated head-chamber system (AHCS) to measure CH4 and a SmartFeed Pro automated feeder for dietary supplementation (C-Lock Inc., Rapid City, SD, USA). After the training period, steers were randomly assigned to a 2â ×â 2 factorial arrangements of treatments, with 2 levels of growth-hormone implants, no-implant (NO-IMP) or implanted (IMP), and 2 levels of tannin supplementation, no tannin supplementation (NO-TAN) or tannin supplementation (TAN). This created 4 treatment groups: (1) NO-TAN and NO-IMP, (2) TAN and NO-IMP, (3) IMP and NO-TAN, and (4) TAN and IMP. Tannin was offered daily at 0.30% dry matter intake (DMI) through 0.5 kg/hd/d sweetfeed supplement (Sweetfeed Mix, AgFinity., Eaton, CO, USA) with a targeted tannin intake at 48 g/hd/d. No (Pâ ≥â 0.05) implant × tannin interaction was detected for any dependent variable, so only the main effects of implant (NO-IMP vs. IMP) and tannin supplementation (NO-TAN vs. TAN) are discussed. Implant status did not affect (Pâ ≥â 0.56) final body weight (FBW) or average daily gain (ADG) during the 90 d grazing period. There was no effect (Pâ ≥â 0.15) of growth implant on CH4 production or emission intensity (EI; g CH4/kg gain). Additionally, IMP steers tended (Pâ ≤â 0.08) to have less CH4 yield (MY; g CH4/g DMI) and higher blood urea nitrogen (BUN) than NO-IMP steers. Tannin supplementation did not impact (Pâ ≥â 0.26) FBW or ADG. However, NO-TAN steers tended (Pâ =â 0.06) to have a greater total DMI than steers supplemented with tannin. No effect (Pâ ≥â 0.22) of tannin supplementation was observed for CH4 production and EI. Nitrogen utilization as measured through BUN, urine N, fecal N, or fecal P was similar (Pâ ≥â 0.12) between TAN and NO-TAN animals. The findings indicate that low-level dietary supplementation to reduce enteric emissions is difficult in grazing systems due to inconsistent animal intake and that growth implants could be used as a strategy to improve growth performance and reduce EI of steers grazing improved pasture.
RESUMO
In this study, antagonistic endophytic fungi were isolated from postharvest chestnut fruits; endophytic antagonistic fungi and their combination of inhibitory effects on the fungal pathogen Neofusicoccum parvum were evaluated. A total of 612 endophytic fungi were isolated from 300 healthy chestnut kernels, and 6 strains out of them including NS-3, NS-11, NS-38, NS-43, NS-56, and NS-58 were confirmed as antagonistic endophytic fungi against Neofusicoccum parvum; these were separately identified as Penicillium chermesinum, Penicillium italicum, Penicillium decaturense, Penicillium oxalicum, Talarmyces siamensis, and Penicillium guanacastense. Some mixed antagonistic endophytic fungi, such as NS-3-38, NS-11-38, NS-43-56, and NS-56-58-38, exhibited a much stronger antifungal activity against N. parvum than that applied individually. Among them, the mixture of NS-3-38 showed the highest antifungal activity, and the inhibition rate was up to 86.67%. The fermentation broth of NS-3, NS-38, and their combinations exhibited an obvious antifungal activity against N. parvum, and the ethyl acetate phase extract of NS-3-38 had the strongest antifungal activity, for which the inhibitory rate was up to 90.19%. The NS-3-38 fermentation broth combined with a chitosan coating significantly reduced N. parvum incidence in chestnuts from 100% to 19%. Furthermore, the fruit decay and weight loss of chestnuts during storage were significantly decreased by the NS-3-38 fermentation broth mixture along with a chitosan coating. Therefore, a mixture of P. chermesinum and P. decaturense could be used as a potential complex biocontrol agent to control postharvest fruit decay in chestnuts.
RESUMO
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
RESUMO
BACKGROUND: Chestnut fruit quality is affected by fungal contamination. The study of the patterns of contamination in the postharvest is crucial to individuate the critical phases and propose solutions. To understand how fungal colonization varies on fruits, the composition of mycobiota was investigated in postharvest handling and in between tissues (shell and kernel). RESULTS: Fungal sequences were clustered into 308 operational taxonomic units (OTUs). Biodiversity was higher in shell than kernel tissues. Results evidenced the risk of new contamination in specific phases such as the 'cold bath' and storage. Genera known as mycotoxin producers were detected in all phases. Specifically, 47 OTUs belonging to Penicillium, eight to Fusarium and two to Aspergillus genera were identified. While Fusarium spp. was sensitive to 'warm bath' phase, Penicillium spp. was largely insensitive and accumulated in storage conditions. Surprisingly, Aspergillus spp. was poorly represented. Aflatoxin, ochratoxin A, fumonisins and T-2/HT-2 detection was performed for shell and kernel, and process phases. Higher contamination was observed on shell than in kernel samples. While aflatoxins were within the European Union (EU) limits for dry fruits, Ochratoxin exceeded the EU limits. The present study represents the first report of fumonisins and T-2/HT-2 detection in chestnuts. CONCLUSION: Fungal contamination taxa is high in chestnut fruits following postharvest handling and storage. A parametrization of process phases such as the 'warm bath' is functional to reduce the risk for some taxa. For other spoilage and mycotoxigenic genera strict sanitation procedures of equipment and water must be individuated and implemented to reduce their impact. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Contaminação de Alimentos , Armazenamento de Alimentos , Frutas , Fungos , Micotoxinas , Frutas/microbiologia , Frutas/química , Micotoxinas/análise , Micotoxinas/metabolismo , Fungos/isolamento & purificação , Fungos/classificação , Fungos/genética , Contaminação de Alimentos/análise , Micobioma , Aesculus/microbiologia , Aspergillus/isolamento & purificação , Aspergillus/classificação , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Penicillium/classificação , Penicillium/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Nozes/microbiologia , Nozes/químicaRESUMO
Bioavailability of potentially toxic elements (PTEs) from the Earth's crust in the soil, e.g., As, Hg, Tl, and Pb, can pose a potential environmental and health risk because of human activities, especially related to mining extraction. The biomonitoring allows to detect PTE contamination through their measurement in living organisms as trees. However, the choice of which plant species and tissue to analyse is a key point to be evaluated in relation to PTE absorption and translocation. The aim of this work was to assess the As, Hg, Tl, and Pb distribution in Castanea sativa Mill. plant tissues, given its importance for both biomass and food production. The study identified two sites in the Alpi Apuane (Italy), with similar environmental conditions (e.g., elevation, exposure, forest type, and tree species) but different soil PTE levels. The topsoil was characterized, and the PTE fractions with different bioavailability were measured. The PTE concentrations were also analysed in chestnut plant tissues (leaves, bark, wood, nuts, and shells) in parallel with and evaluation of plant health status through the determination of micro and macronutrient concentrations and the leaf C and N isotope composition (δ13C or δ15N). Chestnut trees showed a good health status highlighting its suitability for Tl, As, Hg, and Pb biomonitoring, displaying a tissue-specific PTE allocation. Thallium and Hg were detected in all plant tissues at similar concentrations, As was found in leaves, wood, and nuts while Pb only in the bark. The δ15N negatively correlated with leaf Mn and Tl concentrations, suggesting possible changes in N source and/or plant metabolism due to the high contamination level and acid soil pH. Thallium in La Culla site trees was associated with its presence in the carbonate rocks but not in the topsoil, highlighting the potentiality of chestnut in providing valuable information for geochemical surveying.