Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(10): 107726, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214305

RESUMO

The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III. Perturbation of the α-τ binding interaction in vivo resulted in cellular and genomic stress markers that included reduced growth rates, fitness, and viabilities. Specifically, dnaX:mut strains showed increased cell filamentation, mutagenesis frequencies, and activated SOS. In situ fluorescence flow cytometry and microscopy quantified large increases in the amount of ssDNA gaps present. Removal of the C terminus of τ (I618X) still maintained its interactions with DnaB and stimulated unwinding but lost its interaction with Pol III, resulting in significantly reduced rolling circle DNA synthesis. Intriguingly, dnaX:L635P/D636G had the largest induction of SOS, high mutagenesis, and the most prominent ssDNA gaps, which can be explained by an impaired ability to regulate the unwinding speed of DnaB resulting in a faster rate of in vitro rolling circle DNA replication, inducing replisome decoupling. Therefore, τ-stimulated DnaB unwinding and physical coupling with Pol III acts to enforce replisome plasticity to maintain an efficient rate of synthesis and prevent genomic instability.

2.
Cell Mol Life Sci ; 81(1): 245, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814467

RESUMO

DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, ß-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. ß -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, ß-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of ß-clamp. In this review, we scrutinize the ß-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting ß-clamp. Despite decades of research in ß-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.


Assuntos
Proteínas de Bactérias , Replicação do DNA , DNA Bacteriano , Descoberta de Drogas , DNA Bacteriano/metabolismo , DNA Bacteriano/química , Descoberta de Drogas/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , DNA Polimerase III/metabolismo , DNA Polimerase III/química , Modelos Moleculares , Bactérias/metabolismo , Bactérias/genética , Reparo do DNA
3.
Proc Natl Acad Sci U S A ; 121(18): e2319727121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669181

RESUMO

The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Microscopia Crioeletrônica , Proteínas Nucleares , Antígeno Nuclear de Célula em Proliferação , Proteína de Replicação C , Humanos , Microscopia Crioeletrônica/métodos , DNA/metabolismo , DNA/química , Replicação do DNA , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Proteína de Replicação C/metabolismo , Proteína de Replicação C/química
4.
J Biol Chem ; 300(4): 107166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490435

RESUMO

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.


Assuntos
Replicação do DNA , Escherichia coli , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformação Proteica , Proteína de Replicação C/metabolismo , Proteína de Replicação C/química , Proteína de Replicação C/genética , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298175

RESUMO

The ability of mutations to facilitate adaptation is central to evolution. To understand how mutations can lead to functional adaptation in a complex molecular machine, we created a defective version of the T4 clamp-loader complex, which is essential for DNA replication. This variant, which is ∼5,000-fold less active than the wild type, was made by replacing the catalytic domains with those from another phage. A directed-evolution experiment revealed that multiple substitutions to a single negatively charged residue in the chimeric clamp loader-Asp 86-restore fitness to within ∼20-fold of wild type. These mutations remove an adventitious electrostatic repulsive interaction between Asp 86 and the sliding clamp. Thus, the fitness decrease of the chimeric clamp loader is caused by a reduction in affinity between the clamp loader and the clamp. Deep mutagenesis shows that the reduced fitness of the chimeric clamp loader is also compensated for by lysine and arginine substitutions of several DNA-proximal residues in the clamp loader or the sliding clamp. Our results demonstrate that there is a latent capacity for increasing the affinity of the clamp loader for DNA and the sliding clamp, such that even single-point mutations can readily compensate for the loss of function due to suboptimal interactions elsewhere.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA
6.
J Biol Chem ; 300(1): 105588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141767

RESUMO

Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Animais , DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Xenopus laevis/metabolismo , Oócitos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076975

RESUMO

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.

8.
Cell Rep ; 42(7): 112694, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392384

RESUMO

Rad24-RFC (replication factor C) loads the 9-1-1 checkpoint clamp onto the recessed 5' ends by binding a 5' DNA at an external surface site and threading the 3' single-stranded DNA (ssDNA) into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' end, thus presumably leaving 9-1-1 on duplex 3' ss/double-stranded DNA (dsDNA) after Rad24-RFC ejects from DNA. We captured five Rad24-RFC-9-1-1 loading intermediates using a 10-nt gap DNA. We also determined the structure of Rad24-RFC-9-1-1 using a 5-nt gap DNA. The structures reveal that Rad24-RFC is unable to melt DNA ends and that a Rad24 loop limits the dsDNA length in the chamber. These observations explain Rad24-RFC's preference for a preexisting gap of over 5-nt ssDNA and suggest a direct role of the 9-1-1 in gap repair with various TLS (trans-lesion synthesis) polymerases in addition to signaling the ATR kinase.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , DNA/metabolismo , Replicação do DNA , Proteína de Replicação C/metabolismo , Biologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
9.
J Biol Chem ; 299(7): 104872, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257822

RESUMO

African swine fever virus (ASFV) is an important animal pathogen that is causing a current African swine fever pandemic and affecting pork industry globally. ASFV encodes at least 150 proteins, and the functions of many of them remain to be clarified. The ASFV protein E301R (pE301R) was predicted to be a DNA sliding clamp protein homolog working as a DNA replication processivity factor. However, structural evidence was lacking to support the existence of a ring-shaped sliding clamp in large eukaryotic DNA viruses. Here, we have solved a high-resolution crystal structure of pE301R and identified a canonical ring-shaped clamp comprising a pE301R trimer. Interestingly, this complete-toroidal structure is different from those of the monomeric clamp protein homolog, herpes simplex virus UL42, and the C-shaped dimeric human cytomegalovirus UL44, but highly homologous to that of the eukaryotic clamp homolog proliferating cell nuclear antigen. Moreover, pE301R has a unique N-terminal extension that is important in maintaining the trimeric form of the protein in solution, while specific features in length and surface electrostatic potential of its interdomain connector implies specificity in interactions with binding partners such as the viral DNA polymerase. Thus, our data pave the way for further dissection of the processivity clamp protein structural and functional diversity and ASFV DNA replication mechanisms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Humanos , Animais , Vírus da Febre Suína Africana/genética , Conformação Proteica , DNA Polimerase Dirigida por DNA/química , DNA Viral/genética
10.
J Bacteriol ; 205(2): e0043722, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36728506

RESUMO

The DNA clamp loader is critical to the processivity of the DNA polymerase and coordinating synthesis on the leading and lagging strands. In bacteria, the major subunit of the clamp loader, DnaX, has two forms: the essential full-length τ form and shorter γ form. These are conserved across bacterial species, and three distinct mechanisms have been found to create them: ribosomal frameshift, transcriptional slippage, and, in Caulobacter crescentus, partial proteolysis. This conservation suggests that DnaX processing is evolutionarily important, but its role remains unknown. Here we find a bias against switching from expression of a wild-type dnaX to a nonprocessable τ-only allele in Caulobacter. Despite this bias, cells are able to adapt to the τ-only allele with little effect on growth or morphology and only minor defects during DNA damage. Motivated by transposon sequencing, we find that loss of the gene sidA in the τ-only strain slows growth and increases filamentation. Even in the absence of exogenous DNA damage treatment, the ΔsidA τ-only double mutant shows induction of and dependence on recA, likely due to a defect in resolution of DNA damage or replication fork stalling. We find that some of the phenotypes of the ΔsidA τ-only mutant can be complemented by expression of γ but that an overabundance of τ-only dnaX is also detrimental. The data presented here suggest that DnaX processing is important during resolution of DNA damage events during DNA replication stress. Although the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms are important during the resolution of DNA replication stress. IMPORTANCE Though the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms is important during the resolution of DNA replication stress.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , DNA Polimerase III , Replicação do DNA , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Caulobacter crescentus/genética , DNA Bacteriano/genética
11.
J Biol Chem ; 299(4): 103061, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841485

RESUMO

The RAD9-RAD1-HUS1 complex (9-1-1) is a eukaryotic DNA clamp with a crucial role at checkpoints for DNA damage. The ring-like structure of 9-1-1 is opened for loading onto 5' recessed DNA by the clamp loader RAD17 RFC-like complex (RAD17-RLC), in which the RAD17 subunit is responsible for specificity to 9-1-1. Loading of 9-1-1 is required for activation of the ATR-CHK1 checkpoint pathway and the activation is stimulated by a 9-1-1 interacting protein, RHINO, which interacts with 9-1-1 via a recently identified RAD1-binding motif. This discovery led to the hypothesis that other interacting proteins may contain a RAD1-binding motif as well. Here, we show that vertebrate RAD17 proteins also have a putative RAD1-binding motif in their N-terminal regions, and we report the crystal structure of human 9-1-1 bound to a human RAD17 peptide incorporating the motif at 2.1 Å resolution. Our structure confirms that the N-terminal region of RAD17 binds to the RAD1 subunit of 9-1-1 via specific interactions. Furthermore, we show that the RAD1-binding motif of RHINO disturbs the interaction of the N-terminal region of RAD17 with 9-1-1. Our results provide deeper understanding of how RAD17-RLC specifically recognizes 9-1-1 and imply that RHINO has a functional role in 9-1-1 loading/unloading and checkpoint activation.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Exonucleases , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exonucleases/metabolismo
12.
Bioessays ; 44(11): e2200154, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116108

RESUMO

Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circular DNA sliding clamps around DNA. Clamp loaders show homology in all organisms, from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3' primed DNA by the replication factor C (RFC) hetero-pentameric clamp loader. Eukaryotes also have three alternative RFC-like clamp loaders (RLCs) in which the Rfc1 subunit is substituted by another protein. One of these is the yeast Rad24-RFC (Rad17-RFC in human) that loads a 9-1-1 heterotrimer clamp onto a recessed 5' end of DNA. Recent structural studies of Rad24-RFC have discovered an unexpected 5' DNA binding site on the outside of the clamp loader and reveal how a 5' end can be utilized for loading the 9-1-1 clamp onto DNA. In light of these results, new studies reveal that RFC also contains a 5' DNA binding site, which functions in gap repair. These studies also reveal many new features of clamp loaders. As reviewed herein, these recent studies together have transformed our view of the clamp loader mechanism.


Assuntos
Dano ao DNA , Proteínas de Saccharomyces cerevisiae , Humanos , Proteína de Replicação C/química , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Replicação do DNA , DNA/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Circular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Elife ; 112022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731107

RESUMO

Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader replication factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC's central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC's external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.


Assuntos
Trifosfato de Adenosina , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA/metabolismo , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/química , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
Int J Biol Macromol ; 208: 11-19, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35276295

RESUMO

Clamp loaders ensure processive DNA replication by loading the toroidal shaped sliding clamps onto the DNA. The sliding clamps serve as a platform for the attachment of polymerases and several other proteins associated with the regulation of various cellular processes. Clamp loaders are fascinating as nanomachines that engage in protein-protein and protein-DNA interactions. The loading mechanism of the clamp around dsDNA at the atomic level has not yet been fully explored. We performed microsecond timescale molecular dynamics simulations to reveal the dynamics of two different intermediate complexes involved in loading of the clamps around DNA. We conducted various time-dependent MD-driven analyses including the highly robust Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) calculations to observe changes in the structural elements of the clamp loader-clamp-DNA complexes in open and closed states. Our studies revealed the structural consequences of ATP hydrolysis events at different subunits of the clamp loader. This study would help in a better understanding of the clamp loading mechanism and would allow tackling various complications that might arise due to irregularities in this process.


Assuntos
Bacteriófago T4 , DNA , Trifosfato de Adenosina/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , DNA/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Simulação de Dinâmica Molecular
15.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179493

RESUMO

Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.


Assuntos
Replicação do DNA , Saccharomyces cerevisiae , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/química , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/genética
16.
Methods Mol Biol ; 2263: 397-421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877610

RESUMO

Analytical ultracentrifugation is a powerful tool to characterize interactions of macromolecules in solution. In sedimentation velocity experiments, the sedimentation of interaction partners and complexes can be monitored directly and can be used to characterize interactions quantitatively. As an example, we show how the interaction of the clamp loader subcomplex of DNA polymerase III from E. coli and a template/primer DNA saturated with single-stranded DNA-binding protein can be analyzed by analytical ultracentrifugation with fluorescence detection.


Assuntos
DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Fenômenos Biofísicos , DNA Polimerase III/química , Replicação do DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Ligação Proteica , Ultracentrifugação/instrumentação
17.
Biomol NMR Assign ; 15(2): 281-285, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33761093

RESUMO

The E. coli γ clamp loader is a pentameric complex of δ, δ' and three γ subunits that opens and loads ß-clamp proteins onto DNA in an ATP-dependent process essential for efficient DNA replication. ATP binding to the γ subunits promotes conformational changes that enable the clamp loader to bind and open the ring-shaped ß-clamp homodimer. Here we report the nearly complete backbone and side-chain 1H, 13C and 15N NMR resonance assignments of the 242-residue truncated γ subunit of the clamp loader complex, which includes the N-terminal mini (domain I) and lid (domain II) domains. This construct represents the nucleotide binding module in the clamp loader complex and provides a model system for studies of conformational rearrangements of the clamp loader induced by nucleotide binding.


Assuntos
Ressonância Magnética Nuclear Biomolecular
18.
Annu Rev Biochem ; 90: 77-106, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33784179

RESUMO

The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.


Assuntos
Replicação do DNA , DNA/biossíntese , Eucariotos/genética , Complexo de Reconhecimento de Origem/metabolismo , Animais , DNA/química , DNA Polimerase III/química , DNA Polimerase III/metabolismo , Humanos , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo
19.
Subcell Biochem ; 96: 233-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252731

RESUMO

In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Bactérias/enzimologia , Bactérias/genética , Eucariotos/enzimologia , Eucariotos/genética
20.
Proc Natl Acad Sci U S A ; 117(38): 23571-23580, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907938

RESUMO

DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Replicação do DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação , Proteína de Replicação C , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Proteína de Replicação C/química , Proteína de Replicação C/metabolismo , Proteína de Replicação C/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA