Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37513862

RESUMO

Infections caused by multidrug-resistant bacteria are becoming increasingly frequent and sometimes difficult to treat due to the limited number of antibiotics active against them. In addition, they can spread between countries and/or continents, which is a problem of great relevance worldwide. It is, therefore, urgent to find alternatives to treat infections caused by multidrug-resistant bacteria. This study aimed at exploring a possible therapeutic alternative in the fight against antibiotic resistance. Based on the known antibacterial capacity of polyphenols, we tested the antimicrobial activity of a polyphenolic extract of Albariño white grape marc on clinical strains since research on such bacteria has been very scarce until now. First, the extract was obtained using a medium-scale ambient temperature (MSAT) system, which is an efficient and sustainable extractive method. The determinations of the polyphenolic content of the extract and its antioxidant capacity showed good results. Using chromatographic and mass spectrometric tools, 13 remarkable polyphenols were detected in the extract. The antibacterial activity of our grape marc extract against nineteen clinical strain isolates, some of which are multidrug-resistant, was evaluated by means of the calculation of half of the maximum inhibitory concentration (IC50) and the value of the minimum bactericidal concentrations (MBCs). In conclusion, the extract showed effectiveness against all clinical strains tested, regardless of their level of antibiotic resistance, and shows promise in the fight against antibiotic resistance.

2.
J Virol ; 97(1): e0163822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511698

RESUMO

Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Imunoglobulina G/sangue , Macaca mulatta
3.
Antibiotics (Basel) ; 11(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551372

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.

4.
Microorganisms ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422313

RESUMO

BACKGROUND: New Delhi metallo-beta-lactamase (NDM) has been spreading across the globe, but the causes of its success are poorly understood. We characterized a blaNDM-5-positive Escherichia coli strain from a Portuguese hospital and conducted comparative genomic analyses to understand the role of clonal background and horizontal gene transfer in blaNDM-5 dissemination. METHODS: After blaNDM PCR screening and genome sequencing, Ec355340 was subjected to mating, transformation, and plasmid curing assays and MICs determination for several antibiotics. Comparison with data compiled from public databases was performed. RESULTS: blaNDM-5 was in a complex integron co-located in a FIB-FII plasmid (pEc355340_NDM-5). The mating assays were unsuccessful, but plasmid transformation into a susceptible host led to resistance to all beta-lactams and to sulfamethoxazole-trimethoprim. The profile of virulence genes (n = 73) was compatible with extraintestinal pathogenesis. An analysis of genomes from public databases suggested that blaNDM-5 has rarely been associated with ST156 strains (such as Ec355340), while is has frequently been found on strains of the ST10 clonal complex. However, ST156 may play a role in the co-spreading of blaNDM and mcr genes. Regardless, comparative genomics confirmed the presence of blaNDM in similar complex integrons in plasmids (48/100 plasmids most similar to pEc355340_NDM-5) and ST156 genomes (20/41 blaNDM-positive genomes). CONCLUSIONS: blaNDM-5 and other blaNDM variants were more frequently associated to complex integrons than previously reported and, therefore, these platforms may be important drivers in their dissemination. The identification of blaNDM-5 for the first time in Portugal could be a game-changer in the current Portuguese antibiotic resistance scenario, as this gene encodes a higher-level resistance phenotype, and its spread may be facilitated due to the association with complex integrons.

5.
Electrophoresis ; 43(20): 2005-2013, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921647

RESUMO

One of the challenges medicine faces is the constantly growing resistance of pathogens to various classes of antibiotics. In this study, we investigated the use of capillary electrophoresis (CE) to characterize and assess the physiological states of three clinical bacterial strains-methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA), and Escherichia coli extended-spectrum ß-lactamases (ESßL)-exposed to different antibiotics. All chosen bacteria are the leading causes of healthcare-associated and hospital-acquired invasive infections in adults. In the first part of the research, it was determined the optimal incubation time of the tested strains with antibiotics, represented as an optimal time of 24 h. In the second part, we have compared two approaches: flow cytometry (FC) as a standard method and CE as a proposed alternative approach. The viability of clinical strains treated with different class antibiotics calculated in CE measurements was strongly correlated (>0.83 for MSSA, >0.92 for ESßL and MRSA) with the viability obtained on the basis of FC measurements. As a result, CE has a chance to become a modern diagnostic method used in clinical practice. The CE cutoff was found to be 50%; above this value, the strain shows resistance to the action of the antibiotic.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Eletroforese Capilar , Citometria de Fluxo , Humanos , Meticilina/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , beta-Lactamases
6.
Front Microbiol ; 13: 872825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656002

RESUMO

The potentially pathogenic species of the genus Vibrio pose a threat to both humans and animals, creating medical burdens and economic losses to the mariculture industry. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can provide rapid diagnosis and has been widely used in the identification of Vibrio spp. The main weakness of this technology is the limited number of strains and species of Vibrio in the existing commercial database. Here, we develop a new in-house database named PVBase containing 790 main spectra projections (MSP) of ten Vibrio species that come from various regions of China and include abundant clinical and environmental strains. PVBase was validated through a blind test of 65 Vibrio strains. The identification accuracy and scoring of Vibrio strains was greatly improved through the addition of PVBase. Identification accuracy increased from 73.4 to 100%. The number of strains with identification scores above 2.2 increased from 53.1% to 96.9% and 53.1% of strains had an identification score above 2.59. Moreover, perfect discrimination was obtained when using all of the MSPs created for the Vibrio species, even for very closely related species such as V. cholerae, V. albensis, and V. mimicus or V. alginolyticus, V. parahaemolyticus, and V. harveyi. In addition, we used phyloproteomic analysis to study whether there are differences in protein fingerprints of different regions or pathogenic strains. We found that MSP characteristics of Vibrio species were not related to their region or source. With the construction of PVBase, the identification efficiency of potentially pathogenic Vibrio species has been greatly improved, which is an important advance for epidemic prevention and control, and aquaculture disease detection.

7.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924531

RESUMO

Bacteria form multicellular and resistant structures named biofilms. Biofilm formation starts with the attachment phase, and the molecular actors involved in this phase, except adhesins, are poorly characterized. There is growing evidence that phospholipids are more than simple structural bricks. They are involved in bacterial adaptive physiology, but little is known about their role in biofilm formation. Here, we report a mass spectrometry analysis of the phospholipid (PL) profile of several strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. The aim of our study was to evaluate a possible link between the PL profile of a strain and its attachment phenotype. Our results showed that PL profile is strongly strain-dependent. The PL profile of P. aeruginosa PAO1, a collection strain, was different from those of 10 clinical isolates characterized either by a very low or a very high attachment capacity. We observed also that the clinical strain's PL profiles varied even more importantly between isolates. By comparing groups of strains having similar attachment capacities, we identified one PL, PE 18:1-18:1, as a potential molecular actor involved in attachment, the first step in biofilm formation. This PL represents a possible target in the fight against biofilms.


Assuntos
Aderência Bacteriana , Fosfolipídeos/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Humanos , Lipidômica , Análise de Componente Principal , Reprodutibilidade dos Testes
8.
Biomolecules ; 9(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614561

RESUMO

Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana
9.
J Glob Antimicrob Resist ; 8: 104-105, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082144

RESUMO

Enterobacter asburiae belongs to the Enterobacter cloacae complex (Ecc), which comprises six heterogenic species. These bacteria can cause nosocomial infections. Moreover, they are well known for antibiotic resistance features based on overproduction of AmpC ß-lactamases. Although Ecc have clinical importance, little is known about their virulence-associated properties, and very few strains from the six species have been sequenced. In this study, the type strain of E. asburiae 1497-78T (ATCC 35953) was sequenced. The genome sequence of the type strain of E. asburiae will help us to understand antibiotic resistance and evolution in Ecc.


Assuntos
Enterobacter/genética , Genoma Bacteriano , Análise de Sequência de DNA , Infecção Hospitalar/microbiologia , Enterobacter/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Humanos
10.
Int J Mycobacteriol ; 5 Suppl 1: S178, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043538

RESUMO

BACKGROUND: Central nervous system (CNS) infections caused by Mycobacterium tuberculosis (MTB) are the most severe forms of extrapulmonary TB (EPTB) due to high levels of mortality and neurological morbidity. Limited studies are available on CNS-TB animal-model development, despite the steady rise in cerebral-TB cases in India over the past decade. This study describes the development of a murine model of CNS-TB using a clinical strain (C3) isolated from the cerebrospinal fluid (CSF) of CNS-TB patients. METHODS: Groups of mice were infected intravenously with an MTB C3 strain isolated from the CSF of CNS-TB patients in order to mimic the dynamics of actual infection. Brain and lung tissue were evaluated for bacterial burden, as well as histopathology and surrogate markers of TB infection at 30- and 50-days post-infection. RESULTS: Mice infected intravenously with MTB C3 strains showed progressive development of CNS disease, with high bacillary burden in the lungs during the initial stage (30days), which eventually disseminated to the brain at a later stage (50days). All C3-infected mice showed elevated levels of mycobacterial antigens and antibodies, as well as increased T cell adenosine deaminase activity in brain homogenates, which explicitly correlated with mycobacterial load in the brain and chronic brain pathology. High mortality rates (60%) were associated with mice infected with the C3 strain as compared to those of controls. CONCLUSION: Our findings demonstrated the design of a novel murine model of CNS-TB using a C3 strain and that replicated events of EPTB dissemination. This model will promote efforts to understand the pathogenesis CNS-TB infection for development of improved therapeutic interventions in the future.

11.
J Med Virol ; 88(5): 859-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26426373

RESUMO

Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects, and may lead to severe or lethal diseases in immunocompromised individuals. Several HCMV strains have been identified and widely applied in research, but no isolate from China has been characterized. In the present study, we isolated, characterized and sequenced the first Chinese HCMV clinical strain Han, and constructed the novel and functional HCMV infectious clone Han-BAC-2311. HCMV Han was isolated from the urine sample of a Chinese infant with multiple developmental disorders. It expresses HCMV specific proteins and contains a representative HCMV genome with minor differences compared to other strains. By homologous recombination using mini-F derived BAC vector pUS-F6, the infectious clone Han-BAC-2311 was constructed containing representative viral genes across the HCMV genome. The insertion site and orientation of BAC sequence were confirmed by restriction enzyme digestion and Southern blotting. The reconstituted recombinant virus HanBAC-2311 expresses typical viral proteins with the same pattern as that of wild-type Han, and also displayed a similar growth kinetics to wild-type Han. The identification of the first clinical HCMV strain in China and the construction of its infectious clone will greatly facilitate the pathogenesis studies and vaccine development in China.


Assuntos
Cromossomos Artificiais Bacterianos , Clonagem Molecular , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Povo Asiático , China , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/virologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Análise de Sequência de DNA , Urina/virologia , Proteínas Virais/biossíntese
12.
Stand Genomic Sci ; 10: 78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26473025

RESUMO

Mycobacterium tuberculosis K, a member of the Beijing family, was first identified in 1999 as the most prevalent genotype in South Korea among clinical isolates of M. tuberculosis from high school outbreaks. M. tuberculosis K is an aerobic, non-motile, Gram-positive, and non-spore-forming rod-shaped bacillus. A transmission electron microscopy analysis displayed an abundance of lipid bodies in the cytosol. The genome of the M. tuberculosis K strain was sequenced using two independent sequencing methods (Sanger and Illumina). Here, we present the genomic features of the 4,385,518-bp-long complete genome sequence of M. tuberculosis K (one chromosome, no plasmid, and 65.59 % G + C content) and its annotation, which consists of 4194 genes (3447 genes with predicted functions), 48 RNA genes (3 rRNA and 45 tRNA) and 261 genes with peptide signals.

13.
Med Mycol ; 52(2): 211-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24577003

RESUMO

Aspergilloses are fungal diseases in humans and animals that is caused by members of the genus Aspergillus. Aspergillus flavus is an important opportunistic pathogen, second only to A. fumigatus as a cause of human aspergillosis. Differences in virulence among A. flavus isolates from clinical and other substrates and mating types are not well known. The fruit fly Drosophila melanogaster has become a model organism for investigating virulence of human pathogens due to similarities between its immune system and that of mammals. In this study we used D. melanogaster as a model host to compare virulence among A. flavus strains obtained from clinical sources as compared with other substrates, between isolates of different mating types, and between isolates of A. flavus and A. fumigatus. Anesthetized flies were infected with A. flavus; mortality ranged from 15% to >90%. All strains were virulent, but some were significantly more so than others, which in turn led to the wide mortality range. Clinical strains were significantly less virulent than environmental strains, probably because the clinical strains were from culture collections and the environmental strains were recent isolates. Mean virulence did not differ between MAT1-1 and MAT1-2 mating types and the phylogeny of A. flavus isolates did not predict virulence. A. flavus was on average significantly more virulent than A. fumigatus on two lines of wild-type flies, Canton-S and Oregon-R. D. melanogaster is an attractive model to test pathogenicity and could be useful for identifying genes involved in virulence.


Assuntos
Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Drosophila melanogaster/microbiologia , Modelos Animais , Animais , Aspergilose/microbiologia , Aspergillus flavus/classificação , Aspergillus flavus/isolamento & purificação , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Feminino , Genes Fúngicos Tipo Acasalamento , Humanos , Análise de Sobrevida , Virulência
14.
Fitoterapia ; 90: 140-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892000

RESUMO

The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 µg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Clusiaceae/química , Cumarínicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Relação Dose-Resposta a Droga , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Norfloxacino/farmacologia , Extratos Vegetais/química , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA