Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(20)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35213852

RESUMO

The growing demand for optical anti-counterfeiting technology requires the development of new environmentally-friendly smart materials with single-component, multimodal fluorescence. Herein, Cs2ZnBr4:0.3Mn2+&0.15Cu+, as an efficient multimodal luminescent material with excitation-wavelength-dependent emission is reported. Under 365 nm and 254 nm UV light excitation, Cs2ZnBr4:Mn2+&Cu+emits mutually independent green light at 525 nm and blue light at 470 nm, which origin from the emission of Mn2+and the Cu+enhanced self-trapped excitons of Cs2ZnBr4, respectively. Furthermore, the multiexcitonic emission is applied to anti-counterfeiting applications and information encryption and decryption engineering. This codoped strategy provides a colorful step to expand the new metal halide materials in fluorescent anti-counterfeiting and information encryption and decryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA